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Abstract

In preparation for a case study comparing (1) the University of Minnesota’s
Nimbus toolset modeling technique and verification system (using the model
checker NuSMV) to (2) West Virginia University’s prototype modeling and
analysis tool, Lurch, we have prepared a collection of flight guidance models
to use in the experiments. To this effect, we have implemented an automatic
translation procedure from Nimbus input models to Lurch input models. We
have used the automatic translation procedure to produce Lurch versions of
the six flight guidance system models made available to the University of
Minnesota by Rockwell Collins Inc. The translation scheme is presented in
this report and the smallest flight guidance model is included as an example.
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Chapter 1

Introduction

In preparation for a case study comparing (1) the University of Minnesota’s
Nimbus toolset modeling technique and verification system (using the model
checker NuSMV) to (2) West Virginia University’s prototype modeling and
analysis tool, Lurch, we have prepared a collection of flight guidance models
to use in the experiments. To this effect, we have implemented an automatic
translation procedure from Nimbus input models to Lurch input models. We
have used the automatic translation procedure to produce Lurch versions of
the flight guidance system models made available to the University of Min-
nesota by Rockwell Collins Inc. There are six models of the same system,
ranging from a small and abstract to very large and complex. WE have
applied our translation framework to adapt all six flight guidance models to
Lurch for experimentation. In this report we describe the RSML-e model-
ing language used in Nimbus, the Lurch input language and the automatic
translation scheme. In addition, we provide the adaptation of the simplest
flight guidance system as an example of how the translation is done.
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Chapter 2

RSML-e and Nimbus

A detailed description of the RSML-e modeling language and its simulation
and translation environment Nimbus is beyond the scope of this section. Be-
low we present an overview of the language and tools—a detailed description
is included in Appendix B for completeness of this report.

2.1 Framework

Figure 2.1 shows an overview of our verification framework. The user builds
a behavioral model of the system in the fully formal and executable specifica-
tion language RSML-e. The specification is then fed to the Nimbus simulator
which checks that the specification is well formed and type correct. After the
specification is checked, the user can translate the specification to the PVS
or NuSMV input languages.

2.1.1 Overview of RSML-e

RSML-e stands for Requirements State Machine Language without Events.
It is based on the Statecharts [3] like language Requirements State Machine
Language (RSML) [4]. It is fully formal and a synchronous data-flow lan-
guage without any internal broadcast events.

An RSML-e specification consists of a collection of input variables, state
variables, input/output interfaces, functions, macros, and constants; input
variables are used to record the values observed in the environment, state
variables are organized in a hierarchical fashion and are used to model various
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Figure 2.1: Verification Framework.

states of the control model, interfaces act as communication gateways to the
external environment, and functions and macros encapsulate computations
providing increased readability and ease of use.

Figure 2.2 shows a specification fragment of an RSML-e specification of
the Flight Guidance System1. The figure shows the definition of a state
variable, ROLL. ROLL is the default lateral mode in the FGS mode logic. The
state variable ROLL is declared as a child state of Modes and is active when
the variable Modes has the value On—this notion of hierarchical variables
provides the same abstractions and structuring mechanism as the AND and
OR states in Statecharts , but the semantics is much simpler [6].

The conditions under which the state variable changes value are defined
in the TRANSITION clauses in the definition. The condition tables are encoded
in the macros, Select ROLL and Deselect ROLL. The use of macros not only
improves the readability of the specifications but also helps localize errors and
future changes. The tables are adopted from the original RSML notation–
each column of truth values represents a conjunction of the propositions in the
leftmost column (a ‘*’ represents a ”don’t care” condition). If a table contains
several columns, we take the disjunction of the columns; thus, the table is
a way of expressing conditions in a disjunctive normal form. Sometimes we
need to refer to values of the variables at a certain point in the variable

1We use here the ASCII version of RSML-e since it is much more compact than the
more readable typeset version.
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STATE_VARIABLE ROLL : Base_State

PARENT : Modes.On

INITIAL_VALUE : UNDEFINED

CLASSIFICATION : State

TRANSITION UNDEFINED TO Cleared IF NOT Select_ROLL()

TRANSITION UNDEFINED TO Selected IF Select_ROLL()

TRANSITION Cleared TO Selected IF Select_ROLL()

TRANSITION Selected TO Cleared IF Deselect_ROLL()

END STATE_VARIABLE

MACRO Select_ROLL() :

TABLE

Is_No_Nonbasic_Lateral_Mode_Active() : T;

Modes = On : T;

END TABLE

END MACRO

MACRO Deselect_ROLL() :

TABLE

When_Nonbasic_Lateral_Mode_Activated() : T *;

When(Modes = Off) : * T;

END TABLE

END MACRO

Figure 2.2: A small portion of the FGS specification in RSML-e .

history.

MACRO Were_Modes_Off() :
PREV_STEP(Modes) = Off

END MACRO

In the above example, PREV STEP(Modes) refers to the previous value of
the state variable Modes.

Data-flow Semantics: RSML-e transitions are purely condition-based and
free of internal events—as soon as the guards in a variable definition can be
evaluated, it will take on its new value. The variables are partially ordered
based on the data dependency induced by the guard conditions—a similar
semantics is adopted in the programming language Lustre [1]. Data-flow
semantics removes complex issues caused by internal events, such as infinite
triggering events or analysis of micro-steps [2], from the language.

Use of Undefined values: Startup behavior and behavior in the face of
sensor failures pose particular challenges when specifying control systems—
under these circumstances we simply do not know what the state of the
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environment might be. RSML-e supports modeling of this uncertainty by
providing the concept of Undefinedness. One can explicitly specify the initial
value of variables at startup to be Undefined, such as ROLL=UNDEFINED in
Figure 2.2. Also, when a parent variable takes on a new value, each child
variable of the parent value that was just changed are no longer relevant and
must not be used—these child variables are Undefined. RSML-e supports for
both explicit and implicit Undefinedness.
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Chapter 3

The Lurch Input Language

This section provides a short overview of the Lurch input language sufficient
to explain the translation approach from RSML-e to Lurch. The interested
reader can find more information in [5].

3.1 State Machine Description

The Lurch input file is a list of finite-state machines. Different machines are
separated by one or more blank lines. Each machine is a list of transitions,
one per line. A transition takes the form:

<now>; <in>; <out>; <next>;

<now> is a single state in the machine being described, the current state.
<next>, also, is a single state in the machine being described, the next state
the machine goes to after the transition occurs. <in> and <out> are lists of
inputs and outputs separated by commas. Each input and output is a state in
some other machine (not the one being described). Basically, the transition
says: if this machine is in state <now> and the conjunction of inputs listed in
<in> is true, set the outputs listed in <out> to true and go to state <next>.

A minus sign ‘-’ indicates that a field is blank. For example, if no input
is required to trigger the transition (sometimes this is called a lambda or
epsilon transition) it would be written as:

<now>; -; <out>; <next>;
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A particular machine can only be in one state at a time. The translator
needs to know which states belong to which machines so that they can be
marked as mutually exclusive. The translator counts <now> and <next> as
states in the machine being described, and marks them and all other states
known to be in the same machine as mutually exclusive. If a state does not
appear as <now> or <next> but is present in the machine, it can be declared
(it is not necessary but doesn’t hurt to declare all states this way):

<state>;

All declarations (including declarations implied by transitions) describing
a machine must be in the same group, without any blank lines between them,
in order to be recognized as a single machine.

3.2 Special State Marks For Record Keeping

Error states, or any states for which the user needs to see output as soon as
they are reached by Lurch, are marked with “ ” as the first character.

Progress states, significant because their presence inside a cycle means
that cycle is not a “no-progress” cycle (a potential liveness violation) are
marked with “+” as the first character.

3.3 C Function Call Extension

To make complex transition input and output more easy to model, and to
make it possible to use existing code as part of the model, the input language
has been extended. The new transition form is:

<now>; <in>,(<function call>); <out>,{<function call}; <next>;

The input file begins with arbitrary C code including any functions to
be called by transitions. The C-code and finite-state machine sections are
separated by the “%%” marker. Four special optional functions may be defined
in the C-code section also:

• void before(void): this function is called before each iteration of the
search procedure. It should contain initializations for any C variables
included in the model.
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• void after(void): this function is called after each iteration of the
search procedure. It can be used, for example, to free memory allocated
by C functions during the search iteration.

• void lint(ce): for Lurch prINT() (no relation to the UNIX program).
This function is called each time global state information is output to
the counter example file. It can be used to track values of C variables
in the counter example file.

• void lash(int *): this function is called each time global state in-
formation is recorded by Lurch in an integer hash value. It is used to
include C variables in the global state hash value, so that two global
states, though they are identical in terms in finite-state machines, will
get unique hash values if they have different C variable values.

3.4 Example

The example below shows an input model using many of the features de-
scribed above.

/* Process Scheduling Algorithm from "The Model Checker SPIN"

(Holzmann) */

/* global C vars */

static int lk = 0, r_want = 0, r_lock = 0, sleep_q = 0;

static enum { Wakeme, Running } State = Running;

/* called at the beginning of each iteration */

void before()

{

lk = r_want = r_lock = sleep_q = 0;

State = Running;

}

/* put C var info into global state hash integer */

/* void hash(char *, unsigned int *) is defined in node.c */

void lash(unsigned int *h)

{
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char c[16];

sprintf(c, "%i", lk); hash(c, h);

sprintf(c, "%i", r_want); hash(c, h);

sprintf(c, "%i", r_lock); hash(c, h);

sprintf(c, "%i", sleep_q); hash(c, h);

sprintf(c, "%i", State); hash(c, h);

}

/* print C var info in counter example file */

void lint(FILE *ce)

{

fprintf(ce, " lk = %i\n", lk);

fprintf(ce, " r_want = %i\n", r_want);

fprintf(ce, " r_lock = %i\n", r_lock);

fprintf(ce, " sleep_q = %i\n", sleep_q);

State == Wakeme ?

fprintf(ce, " State = Wakeme\n") :

fprintf(ce, " State = Running\n");

}

%%

(in this section any line without a semicolon is a comment)

+c14 is a progress state

_c14_assert_violated is an error state

c3; (lk == 0); {lk = 1;}; c11;

c5; -; {r_want = 1;}; c6;

c6; -; {State = Wakeme;}; c7;

c7; -; {lk = 0;}; c8;

c8; (State == Running); -; c3;

c11; (r_lock == 1); -; c5;

c11; (r_lock == 0); -; +c14;

+c14; (r_lock == 0); -; c15;

+c14; (r_lock != 0); _c14_assert_violated; +c14;

c15; -; {r_lock = 1;}; c16;

c16; -; {lk = 0;}; c3;
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c14_assert_ok;

_c14_assert_violated;

s1; -; {r_lock = 0;}; s2;

s2; (lk == 0); -; s15;

s6; (sleep_q == 0); {sleep_q = 1;}; s7;

s7; -; {r_want = 0;}; s11;

s9; -; {State = Running;}; s13;

s11; (State == Wakeme); -; s9;

s11; (State != Wakeme); -; s13;

s13; -; {sleep_q = 0;}; s1;

s15; (r_want == 1); -; s6;

s15; (r_want != 1); -; s1;
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Chapter 4

Translation from RSML-e to
Lurch

This chapter describes the translation scheme from RSML-e to the input
language for Lurch random state search. Due the special purpose of the
target language, it is often not expressive enough to represent a complete
RSML-e specification. Some non-critical information will be discarded dur-
ing the translation process. We need to ensure that the generated code still
represent equivalent state machines after this information loss. There are,
however, also critical RSML-e language features such as the integer variable
type that cannot be supported by this translation at this stage, due to the
common problem that numeric variables will cause for any finite state ma-
chine representation. For specifications that do use these features, we output
an error message reporting that the translation cannot be completed.

4.1 Translation Scheme

4.1.1 Data Types

There are five data types in RSML-e : Integer, Real, Time, Bool and enumer-
ated types. This translation does not support the numeric types—only the
Bool and enumerated types will be translated due to the limits of the Lurch
input language. In RSML-e , enumerated types are either explicitly defined
or implied in a variable definition. In our target language, however, there
is no concept of types, and enumeration symbols are simply used without
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a type definition. Therefore the type definitions in RSML-e can be ignored
during the translation. Similarly, the Bool type can be viewed as a special
type of enumeration, the values of which can be used in the Lurch input
language without a type definition.

However, besides the state machine description, C language code can
be embedded into the Lurch specification. To simplify the evaluation of
state transition conditions, a C variable is declared for each state machine
and keeps track of its most current state. Therefore, a C enumeration type
declarations is needed for each RSML-e type. For example, the RSML-e type
definition

TYPE_DEF DOIStatusType {On, Off}

will be translated into the following in the C code section:

enum DOIStatusType {DOIStatusType_On, DOIStatusType_Off};

4.1.2 Variables

Input Variables

Each input variable will be translated into an individual state machine in the
target language. There are no state transitions for input variables in RSML-e

and they are assigned by the input interfaces. During the translation, ran-
dom transitions will be specified for each input variable (the transition is
nondeterministic, and can go from a state to any other state or stay in the
old state). For example, the following input variable definition in RSML-e

TYPE_DEF InhibitType { Inhibit, NoInhibit }

IN_VARIABLE InhibitSignal : InhibitType

INITIAL_VALUE : NoInhibit

END IN_VARIABLE

will be translated into the following in the target language:

InhibitSignal=NoInhibit; InhibitSignal=NoInhibit; -;

-, {InhibitSignal = InhibitType_Undefined;};

InhibitSignal=Undefined;

InhibitSignal=NoInhibit; -;
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-, {InhibitSignal = InhibitType_Inhibit;};

InhibitSignal=Inhibit;

InhibitSignal=NoInhibit; -;

-, {InhibitSignal = InhibitType_NoInhibit;};

InhibitSignal=NoInhibit;

InhibitSignal=Inhibit; -;

-, {InhibitSignal = InhibitType_Undefined;};

InhibitSignal=Undefined;

InhibitSignal=Inhibit; -;

-, {InhibitSignal = InhibitType_Inhibit;};

InhibitSignal=Inhibit;

InhibitSignal=Inhibit; -;

-, {InhibitSignal = InhibitType_NoInhibit;};

InhibitSignal=NoInhibit;

InhibitSignal=Undefined; -;

-, {InhibitSignal = InhibitType_Undefined};

InhibitSignal=Undefined;

InhibitSignal=Undefined; -;

-, {InhibitSignal = InhibitType_Inhibit;};

InhibitSignal=Inhibit;

InhibitSignal=Undefined; -;

-, {InhibitSignal = InhibitType_NoInhibit;};

InhibitSignal=NoInhibit;

InhibitSignal_prev=Undefined; InhibitSignal_prev=NoInhibit;

InhibitSignal=Inhibit;

-, {InhibitSignal_prev = InhibitType_Inhibit;};

InhibitSignal_prev=Inhibit;

InhibitSignal_prev=NoInhibit; InhibitSignal=Undefined;

-, {InhibitSignal_prev = InhibitType_Undefined;};

InhibitSignal_prev=Undefined;

InhibitSignal_prev=Inhibit; InhibitSignal=NoInhibit;

-, {InhibitSingal_prev = InhibitType_NoInhibit;};

InhibitSignal_prev=NoInhibit;

InhibitSignal_prev=Inhibit; InhibitSignal=Undefined;

-, {InhibitSingal_prev = InhibitType_Undefined;};

InhibitSignal_prev=Undefined;

InhibitSignal_prev=Undefined; InhibitSignal=Inhibit;
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-, {InhibitSingal_prev = InhibitType_Inhibit;};

InhibitSignal_prev=Inhibit;

InhibitSignal_prev=Undefined; InhibitSignal=NoInhibit;

-, {InhibitSingal_prev = InhibitType_NoInhibit;};

InhibitSignal_prev=NoInhibit;

In this translation, InhibitSignal prev is the state machine to keep
track of the previous step value of InhibitSignal. It is needed if
InhibitSignal is referenced by a SCR expression or by a PREV STEP
expression. Note that as part of the state transition output, a C language
variable with the same name as the state machine is assigned to the value
corresponding to the target state.

State Variables

Each state variable in RSML-e will be translated into a state machine in the
target language. For example, the state variable definition for ASWOpModes

in the following RSML-e example

STATE_VARIABLE ASWOpModes :

VALUES : { OK, Inhibited, FailureDetected }

PARENT : NONE

INITIAL_VALUE : OK

CLASSIFICATION : State

EQUALS Inhibited IF

TABLE

InhibitSignal = Inhibit : T;

ivReset : F;

DOI IN_STATE Failed : F;

AltitudeStatus IN_STATE AltitudeBad : F;

END TABLE

EQUALS FailureDetected IF

TABLE

DOI IN_STATE Failed : T *;

AltitudeStatus IN_STATE AltitudeBad : * T;

ivReset : F F;

END TABLE
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EQUALS OK IF

TABLE

InhibitSignal = Inhibit : F *;

ivReset : * T;

END TABLE

END STATE_VARIABLE

can be translated into

ASWOpModes=OK; ASWOpModes=Undefined; -, (InhibitSignal == InhibitType_Inhibit &&
!(ivReset == BOOLEAN_True) && DOI != DOI_type_Failed &&
AltitudeStatus != AltitudeStatus_type_AltitudeBad);
-, {ASWOpModes = ASWOpModes_type_Inhibited;};
ASWOpModes=Inhibited;

ASWOpModes=OK; -, (InhibitSignal == InhibitType_Inhibit &&
!(ivReset == BOOLEAN_True) && DOI != DOI_type_Failed &&
AltitudeStatus != AltitudeStatus_type_AltitudeBad);
-, {ASWOpModes = ASWOpModes_type_Inhibited;};
ASWOpModes=Inhibited;

ASWOpModes=Inhibited; -, (InhibitSignal == InhibitType_Inhibit &&
!(ivReset == BOOLEAN_True) && DOI != DOI_type_Failed &&
AltitudeStatus != AltitudeStatus_type_AltitudeBad);
-, {ASWOpModes = ASWOpModes_type_Inhibited;};
ASWOpModes=Inhibited;

ASWOpModes=FailureDetected; -, (InhibitSignal ==
InhibitType_Inhibit && !(ivReset == BOOLEAN_True) &&
DOI != DOI_type_Failed &&
AltitudeStatus != AltitudeStatus_type_AltitudeBad);
-, {ASWOpModes = ASWOpModes_type_Inhibited;};
ASWOpModes=Inhibited;

ASWOpModes=Undefined; -, ((DOI == DOI_type_Failed && !(ivReset ==
BOOLEAN_True) || (AltitudeStatus ==
AltutudeStatus_type_AltitudeBad && !(ivReset == BOOLEAN_True));
-, {ASWOpModes = ASWOpModes_type_FailureDetected;};
ASWOpModes=FailureDetected;

ASWOpModes=OK; -, ((DOI == DOI_type_Failed &&
!(ivReset == BOOLEAN_True) ||
(AltitudeStatus == AltutudeStatus_type_AltitudeBad &&
!(ivReset == BOOLEAN_True));
-, {ASWOpModes = ASWOpModes_type_FailureDetected;};
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ASWOpModes=FailureDetected;
ASWOpModes=Inhibiteded; -, ((DOI == DOI_type_Failed &&

!(ivReset == BOOLEAN_True) || (AltitudeStatus ==
AltutudeStatus_type_AltitudeBad &&
!(ivReset == BOOLEAN_True));
-, {ASWOpModes = ASWOpModes_type_FailureDetected;};
ASWOpModes=FailureDetected;

ASWOpModes=FailureDetected; -, ((DOI == DOI_type_Failed &&
!(ivReset == BOOLEAN_True) || (AltitudeStatus ==
AltutudeStatus_type_AltitudeBad &&
!(ivReset == BOOLEAN_True));
-, {ASWOpModes = ASWOpModes_type_FailureDetected;};
ASWOpModes=FailureDetected;

ASWOpModes=Undefined; -, ((!(InhibitSignal ==
InhibitType_Inhibit)) || ivReset == BOOLEAN_True);
-, {ASWOpModes = ASWOpModes_type_OK;};
ASWOpModes=OK;

ASWOpModes=OK; -, ((!(InhibitSignal ==
InhibitType_Inhibit)) || ivReset == BOOLEAN_True);
-, {ASWOpModes = ASWOpModes_type_OK;};
ASWOpModes=OK;

ASWOpModes=Inhibited; -, ((!(InhibitSignal ==
InhibitType_Inhibit)) || ivReset == BOOLEAN_True);
-, {ASWOpModes = ASWOpModes_type_OK;};
ASWOpModes=OK;

ASWOpModes=FailureDetected; -, ((!(InhibitSignal ==
InhibitType_Inhibit)) || ivReset == BOOLEAN_True);
-, {ASWOpModes = ASWOpModes_type_OK;};
ASWOpModes=OK;

In this translation, all the transition conditions are translated into embed-
ded C code, and every transition is accompanied by a C variable assignment
in the output action keeping track of the current state.

4.1.3 Expressions

Arithmetic and Relational Expressions

Since we do not support numeric types in this translation, the arithmetic and
relational expressions, including +, −, ∗, /, >, >=, <, and <= expressions,
will not be supported either.
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Variable Expressions

Because we cannot translate time to the target language, the variable time
expressions (TIME CHANGED and TIME ASSIGNED) will not be
supported. In the variable value expressions, only expressions in the form
PREV V ALUE(x, 0) will be supported, x being either a variable name or
PREV STEP expression of a variable. PREV ASSIGN expressions will
not be supported.

In order to support the PREV STEP expression, aside from the state
machines that represents the RSML-e variables, we need to introduce a new
state machine x prev for a variable when needed.

Interface Expressions

Input interface expressions All the input interfaces in RSML-e will be
removed. The handlers within an interface, dealing with the assignment
of input variables, will be translated into the state transitions of the input
variables involved (See Section 4.1.5). The LAST IO expression will not be
supported.

Output interface expressions The output interfaces, responsible for the
output of values of state variables, will be removed during the translation.
The LAST IO expression will not be supported.

AndOrTables

In RSML-e , AndOrTables are used in the condition of a state transition or
in the condition of an interface handler. The interface handler will also be
translated into state transition statements in the target language. Since C
predicates can be embedded in the state transition declaration of the Lurch
input language, we choose to translate all AndOrTables into equivalent C
boolean expressions (see example in Section 4.1.2).

Function and Macro Expressions

Our target language does not support the definition of functions and macros.
Since functions may return numeric values they are not supported by this
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translation. Macros will be translated into embedded C code function defi-
nitions in the NAYO input language, and a macro reference expression will
be translated into a corresponding function call.

4.1.4 Constants

RSML-e constants will be translated into NAYO state machines with only a
initial state and no transitions.

4.1.5 Interfaces

Input Interfaces

All RSML-e input interfaces will be removed during the translation. As the
result, the input constraints (the handler conditions) will be lost during the
translation. This is not a problem for the FGS models that we are going to
experiment with initially, since all the handler conditions are TRUE in these
models. However, eventually these conditions can be translated into state
transition conditions by means of transforming all input variables into state
variables and all message fields into input variables for the RSML-e specifi-
cation. This process will be implemented as an independent preprocessing
pass in the NIMBUS framework that can be reused by different translators
in the future.

Output Interfaces

All RSML-e output interfaces will be removed during the translation. As the
result, the output handler conditions will not be reflected in the translated
NAYO specification. Similar to input interfaces, however, this information
will not be lost if a preprocessing pass can transform all output message fields
into state variables.

4.1.6 Messages

As previous stated, all messages and their associated fields will be removed
during the translation unless a preprocessing pass is applied to transform
them into input or state variables.
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4.1.7 Functions and Macros

Functions in RSML-e will not be supported by this translation. A macro
definition will be translated into C language function definitions that can be
imbedded into the NAYO specification. For example, the macro definition

MACRO AndAB() :

TABLE:

a : T;

b : T;

END TABLE

END MACRO

will be translated into

int AndAB() {

return a && b;

}

4.2 Special Issues

4.2.1 Embedded C code

Besides the C predicates and C assignments imbedded in the state transition
declarations of the translated Lurch specification, a special section before the
state machine description is used for C variable declarations and initializa-
tions, and function definitions. In this section, a C variable with its associated
enumeration type is declared for each state machine. A before() function
initializes these C variables to the initial states before each search iteration.
The translation for all RSML-e macros is also located in this section.

4.2.2 Synchronization

Since Lurch uses an asynchronous search algorithm, while RSML-e is a
synchronous language where each variable is evaluated once per step in a
dataflow order, in the translation we need to somehow force the the eval-
uation order of the Lurch state machines. This is achieved by adding an
ordering state machine into the Lurch specification during the translation.
For example, to translate a RSML-e specification with variables A, B, and C

(in evaluation order), we add state machine
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0;

0; -; -; 1;

1; -; -; 2;

2; -; -; 0;

while in the translation for the variables, the order number is added to the
transition conditions:

A=a1; 0, ...; -, ...; A=a2;

A=a2; 0, ...; -, ...; A=a3;

...

B=b1; 1, ...; -, ...; B=b2;

B=b2; 1, ...; -, ...; B=b3;

...

C=c1; 2, ...; -, ...; C=c2;

C=c2; 2, ...; -, ...; C=c3;

...

This way, all the state machines will be evaluated in dataflow order.

4.2.3 Property translation

All the temporal properties to be checked by Lurch will be manually trans-
lated into a state machine in the Lurch specification. The evaluation order
number also needs to be added to the transition conditions, since many of
the intermediate states during Lurch evaluation are not visible global states
in RSML-e . In the above example, only the global states when the ordering
state machine is in state 0 are visible.

4.2.4 Boolean Undefinedness

As discussed in Appendix ?? RSML-e uses a three valued logic for the
Boolean type, True, False and Undefined. In the Lurch translation, the
RSML-e Boolean type is defined as the following:

enum BOOLEAN {BOOLEAN_False, BOOLEAN_True, BOOLEAN_Undefined};
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The semantics of evaluating a Boolean variable with the value BOOLEAN Undefined
is in RSML-e defined to be either True or False. Thus, the three values of
a variable are mapped into the two values of Boolean expressions—RSML-e

simply treats an undefined value as an unknown Boolean value, either true
or false. Thus, in the C translation, we cannot use the standard C Boolean
operators since we are dealing with an enumerated type. Instead, we choose
to treat the Booleans the same way they are dealt with in our translation to
NuSMV—we explicitly check if a variable is equal to a truth value. For ex-
ample, a RSML-e Boolean expression (A & B = Good) containing a Boolean
variable reference A would be translated into (A == BOOLEAN True && B ==

Good) in the Lurch input language. Thus, if a Boolean variable has the value
Undefined, it is neither true, nor false.
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Appendix A

FGS01 Translation Example

To illustrate the translation from RSML-e to Lurch, we include the full trans-
lation for one of the simplest FGS models—FGS-01.

A.1 FGS-01 in RSML-e

/**********************************************************************/

/* Copyright 2001 Rockwell Collins, Inc. All rights reserved. */

/**********************************************************************/

/**********************************************************************/

/* Toy FGS Requirements Specification Version 1 */

/* */

/* Version 0 consists of a simple Flight Director and the lateral */

/* modes of Roll Hold (ROLL) and Heading Hold (HDG). */

/* */

/* Version 1 adds the vertical modes of Pitch Hold (PTCH) and */

/* Vertical Speed Hold (VS). */

/* */

/**********************************************************************/

/**********************************************************************/

/*L \section{Basic Definitions} L*/

/*L This section defines types and constants L*/

/*L that are used throughout the specification. \bl L*/

/**********************************************************************/

/**************************************************************/

/* The following types are the states of the hierarchical */

/* modes defined in the specification. */

/**************************************************************/

TYPE_DEF On_Off {Off, On}

TYPE_DEF Base_State {Cleared, Selected}

TYPE_DEF Selected_State {Armed, Active}

/**********************************************************************/
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/*L \sectionp{Flight Director (FD)}

The Flight Director (FD) displays the pitch and roll guidance

commands to the pilot and copilot on the Primary Flight Display.

This component defines when the Flight Director guidance cues are

turned on and off.

L*/

/**********************************************************************/

/**************************************************************/

/*L \imports L*/

/**************************************************************/

MACRO When_Turn_FD_On() :

TABLE

When_FD_Switch_Pressed() : T * *;

When_Lateral_Mode_Manually_Selected() : * T *;

When_Vertical_Mode_Manually_Selected() : * * T;

END TABLE

Purpose : &*L This event defines when the onside FD is

to be turned on (i.e., displayed on the PFD). L*&

END MACRO

MACRO When_Turn_FD_Off(): When_FD_Switch_Pressed_Seen()

Purpose : &*L This event defines when the onside FD is

to be turned off (i.e., removed from the PFD). L*&

END MACRO

MACRO When_Lateral_Mode_Manually_Selected():

When_HDG_Switch_Pressed_Seen()

Purpose : &*L This event defines when a lateral

mode is manually selected. L*&

END MACRO

MACRO When_Vertical_Mode_Manually_Selected():

When_VS_Switch_Pressed_Seen()

Purpose : &*L This event defines when a vertical

mode is manually selected. L*&

END MACRO

/**************************************************************/

/*L \exports L*/

/**************************************************************/

STATE_VARIABLE Onside_FD: On_Off

PARENT : None

INITIAL_VALUE : Off

CLASSIFICATION: State

Transition Off TO On IF When_Turn_FD_On()

Transition On TO Off IF When_Turn_FD_Off()

Purpose : &*L This variable maintains the current
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state of the onside Flight Director. L*&

END STATE_VARIABLE

/**********************************************************************/

/*L \sectionp{Flight Modes}

The flight modes determine which modes of

operation of the FGS are active and armed at any given moment.

These in term determine which flight control laws

are generating the commands directing the aircraft along the lateral

(roll) and vertical (pitch) axes.

This component encapsulates the

definitions of the lateral and vertical modes and defines how they

are synchronized.

L*/

/**********************************************************************/

/**************************************************************/

/*L \imports L*/

/**************************************************************/

MACRO When_Turn_Modes_On(): Onside_FD = On

Purpose : &*L This event defines when the flight modes

are to be turned on and displayed on the PFD. L*&

END MACRO

MACRO When_Turn_Modes_Off(): Onside_FD = Off

Purpose : &*L This event defines when the flight

modes are to be turned off and removed from the PFD. L*&

END MACRO

/**************************************************************/

/*L \exports L*/

/**************************************************************/

STATE_VARIABLE Modes: On_Off

PARENT : None

INITIAL_VALUE : Off

CLASSIFICATION: State

TRANSITION Off TO On IF When_Turn_Modes_On()

TRANSITION On TO Off IF When_Turn_Modes_Off()

Purpose : &*L This variable maintains the current

state of whether the mode annunciations are

turned on or off. L*&

END STATE_VARIABLE

/**************************************************************/

/* FD Cues On */

/**************************************************************/

STATE_VARIABLE FD_Cues_On: Boolean

PARENT : NONE

INITIAL_VALUE : FALSE

CLASSIFICATION: CONTROLLED
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EQUALS Onside_FD = On IF TRUE

Purpose : &*L Indicates if the FD Guidance cues

should be displayed on the PFD. L*&

END STATE_VARIABLE

/**************************************************************/

/* Modes On Off */

/**************************************************************/

STATE_VARIABLE Mode_Annunciations_On: Boolean

PARENT : NONE

INITIAL_VALUE : FALSE

CLASSIFICATION: CONTROLLED

EQUALS Modes = On IF TRUE

Purpose : &*L Indicates if the mode annunications

should be displayed on the PFD. L*&

END STATE_VARIABLE

/**********************************************************************/

/*L \subsectionp{Lateral Modes}

The lateral modes select the control laws generating commands

directing the aircraft along the lateral, or roll, axis.

This component encapsulates the specific lateral modes

present in this aircraft and defines how they are synchronized.

L*/

/**********************************************************************/

/**************************************************************/

/*L \encapsulated L*/

/**************************************************************/

MACRO When_Nonbasic_Lateral_Mode_Activated() : When_HDG_Activated()

Purpose : &*L This event ocurrs when a new lateral

mode other than the basic mode becomes active. It is

used to deselect active or armed modes. L*&

Comment: &*L Basic mode is excluded to avoid a

cyclic dependency in the definition of this macro. L*&

END MACRO

MACRO Is_No_Nonbasic_Lateral_Mode_Active() : NOT Is_HDG_Active

Purpose : &*L This condition indicates if no lateral

mode except basic mode is active. It is used to

trigger the activation of the basic lateral mode. L*&

Comment: &*L Basic mode is excluded to avoid a

cyclic dependency in the definition of this macro. L*&

END MACRO

/**********************************************************************/

/*L \subsubsectionp{Roll Hold (ROLL) Mode}
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In Roll Hold mode the FGS generates guidance commands to hold the

aircraft at a fixed bank angle.

Roll Hold mode is the basic lateral mode and is always active when

the modes are displayed and no other lateral mode is active.

L*/

/**********************************************************************/

/**************************************************************/

/*L \imports L*/

/**************************************************************/

MACRO Select_ROLL() :

TABLE

Is_No_Nonbasic_Lateral_Mode_Active() : T;

Modes = On : T;

END TABLE

Purpose : &*L This event defines when Roll Hold mode

is to be selected. Roll Hold mode is the basic, or default,

mode and is selected whenever the mode annunciations

are on and no other lateral mode is active. L*&

Comment : &*L To avoid cyclic dependencies, the

only way to select Roll Hold mode is to deselect

the active lateral mode, which will automatically

activate Roll Hold. L*&

END MACRO

MACRO Deselect_ROLL() :

TABLE

When_Nonbasic_Lateral_Mode_Activated() : T *;

When(Modes = Off) : * T;

END TABLE

Purpose : &*L The event defines when Roll Hold mode is

to be deselected. This occurs when a new lateral mode is

activated or the modes are turned off. L*&

END MACRO

/**************************************************************/

/*L \exports L*/

/**************************************************************/

STATE_VARIABLE Is_ROLL_Selected: Boolean

PARENT : NONE

INITIAL_VALUE : FALSE

CLASSIFICATION: CONTROLLED

EQUALS ..ROLL = Selected IF TRUE

Purpose : &*L Indicates if ROLL mode is selected. L*&

END STATE_VARIABLE

STATE_VARIABLE Is_ROLL_Active: Boolean

PARENT : NONE

INITIAL_VALUE : FALSE

CLASSIFICATION: CONTROLLED
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EQUALS ..ROLL = Selected IF TRUE

Purpose : &*L Indicates if ROLL mode is active. L*&

Comment : &*L Even though ROLL Selected and ROLL Active are

the same thing, this variable is introduced to maintain a

common interface across modes. L*&

END STATE_VARIABLE

/**************************************************************/

/*L \encapsulated L*/

/**************************************************************/

STATE_VARIABLE ROLL : Base_State

PARENT : Modes.On

INITIAL_VALUE : UNDEFINED

CLASSIFICATION : State

TRANSITION UNDEFINED TO Cleared IF NOT Select_ROLL()

TRANSITION UNDEFINED TO Selected IF Select_ROLL()

TRANSITION Cleared TO Selected IF Select_ROLL()

TRANSITION Selected TO Cleared IF Deselect_ROLL()

Purpose : &*L This variable maintains the current base

state of Roll Hold mode, i.e., whether it is

cleared or selected. L*&

END STATE_VARIABLE

/**********************************************************************/

/*L \subsubsectionp{Heading Select (HDG) Mode}

In Heading Select mode, the FGS provides guidance commands to

to track the Selected Heading displayed on the PFD.

L*/

/**********************************************************************/

/**************************************************************/

/*L \imports L*/

/**************************************************************/

MACRO Select_HDG() : When_HDG_Switch_Pressed_Seen()

Purpose : &*L This event defines when Heading Select

mode is to be selected. L*&

END MACRO

MACRO Deselect_HDG() :

TABLE

When_HDG_Switch_Pressed_Seen() : T * *;

When_Nonbasic_Lateral_Mode_Activated() : * T *;

When(Modes = Off) : * * T;

END TABLE

Purpose : &*L This event defines when Heading Select mode

is to be deselected. L*&
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END MACRO

/**************************************************************/

/*L \exports L*/

/**************************************************************/

STATE_VARIABLE Is_HDG_Selected: Boolean

PARENT : NONE

INITIAL_VALUE : FALSE

CLASSIFICATION: CONTROLLED

EQUALS ..HDG = Selected IF TRUE

Purpose : &*L Indicates if Hdg Mode is selected. L*&

END STATE_VARIABLE

STATE_VARIABLE Is_HDG_Active: Boolean

PARENT : NONE

INITIAL_VALUE : FALSE

CLASSIFICATION: CONTROLLED

EQUALS ..HDG = Selected IF TRUE

Purpose : &*L Indicates if HDG Mode is active. L*&

Comment : &*L Even though HDG Selected and HDG Active are

the same thing, this variable is introduced to maintain a

common interface across modes. L*&

END STATE_VARIABLE

MACRO When_HDG_Activated() :

TABLE

Select_HDG() : T;

PREV_STEP(..HDG) = Selected : F;

END TABLE

Purpose : &*L This signal occurs when Heading Select mode

is activated. L*&

Comment : &*L This event is defined this way to avoid

circular dependencies. It would be preferable to define

it as When(HDG = Selected). L*&

END MACRO

/**************************************************************/

/*L \encapsulated L*/

/**************************************************************/

STATE_VARIABLE HDG : Base_State

PARENT : Modes.On

INITIAL_VALUE : UNDEFINED

CLASSIFICATION : State

Purpose : &*L This variable maintains the current base

state of Heading Select mode, i.e., whether it is

cleared or selected. L*&
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TRANSITION UNDEFINED TO Cleared IF NOT Select_HDG()

TRANSITION UNDEFINED TO Selected IF Select_HDG()

TRANSITION Cleared TO Selected IF Select_HDG()

TRANSITION Selected TO Cleared IF Deselect_HDG()

END STATE_VARIABLE

/**********************************************************************/

/*L \subsectionp{Vertical Modes}

The vertical modes select the control laws generating commands

directing the aircraft along the vertical, or pitch, axis.

This component encapsulates the specific vertical modes

present in this aircraft and defines how they are synchronized.

L*/

/**********************************************************************/

/**************************************************************/

/*L \encapsulated L*/

/**************************************************************/

MACRO When_Nonbasic_Vertical_Mode_Activated() : When_VS_Activated()

Purpose : &*L This event indicates when a new vertical

mode other than the basic mode becomes active. It is

used to deselect active or armed modes. L*&

Comment: &*L Basic mode is excluded to avoid a

cyclic dependency in the definition of this macro. L*&

END MACRO

MACRO Is_No_Nonbasic_Vertical_Mode_Active() : NOT Is_VS_Active

Purpose : &*L This condition indicates if no vertical

mode except basic mode is active. It is used to

trigger the activation of the basic lateral mode. L*&

Comment: &*L Basic mode is excluded to avoid a

cyclic dependency in the definition of this macro. L*&

END MACRO

/**********************************************************************/

/*L \subsubsectionp{Pitch Hold (PITCH) Mode}

In Pitch Hold mode the FGS generates guidance commands to hold the

aircraft at a fixed pitch angle.

Pitch Hold mode is the basic vertical mode and is always active when

the modes are displayed and no other vertical mode is active.

L*/

/**********************************************************************/

/**************************************************************/

/*L \imports L*/

/**************************************************************/

MACRO Select_PITCH() :
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TABLE

Is_No_Nonbasic_Vertical_Mode_Active() : T;

Modes = On : T;

END TABLE

Purpose : &*L Pitch Hold mode is the basic, or default,

mode and is selected whenever the mode annunciations

are on and no other vertical mode is active. L*&

Comment : &*L To avoid cyclic dependencies, the

only way to select Pitch Hold mode is to deselect

the active vertical mode, which will automatically

activate Pitch Hold mode. L*&

END MACRO

MACRO Deselect_PITCH() :

TABLE

When_Nonbasic_Vertical_Mode_Activated() : T *;

When(Modes = Off) : * T;

END TABLE

Purpose : &*L Pitch Hold mode is deselected when:

a new vertical mode is activated or

the modes are turned off. L*&

END MACRO

/**************************************************************/

/*L \exports L*/

/**************************************************************/

STATE_VARIABLE Is_PITCH_Selected: Boolean

PARENT : NONE

INITIAL_VALUE : FALSE

CLASSIFICATION: CONTROLLED

EQUALS ..PITCH = Selected IF TRUE

Purpose : &*L Indicates if PITCH mode is selected. L*&

END STATE_VARIABLE

STATE_VARIABLE Is_PITCH_Active: Boolean

PARENT : NONE

INITIAL_VALUE : FALSE

CLASSIFICATION: CONTROLLED

EQUALS ..PITCH = Selected IF TRUE

Purpose : &*L Indicates if PITCH mode is active. L*&

Comment : &*L Even though PITCH Selected and PITCH Active are

the same thing, this variable is introduced to maintain a

common interface across modes. L*&

END STATE_VARIABLE
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/**************************************************************/

/*L \encapsulated L*/

/**************************************************************/

STATE_VARIABLE PITCH : Base_State

PARENT : Modes.On

INITIAL_VALUE : UNDEFINED

CLASSIFICATION : State

TRANSITION UNDEFINED TO Cleared IF NOT Select_PITCH()

TRANSITION UNDEFINED TO Selected IF Select_PITCH()

TRANSITION Cleared TO Selected IF Select_PITCH()

TRANSITION Selected TO Cleared IF Deselect_PITCH()

Purpose : &*L This variable maintains the current base

state of Pitch Hold mode, i.e., whether it is

cleared or selected. L*&

END STATE_VARIABLE

/**********************************************************************/

/*L \subsubsectionp{Vertical Speed (VS) Mode}

In Vertical Speed mode, the FGS provides pitch guidance commands to

to hold the aircraft to the Vertical Speed (VS) reference.

L*/

/**********************************************************************/

/**************************************************************/

/*L \imports L*/

/**************************************************************/

MACRO Select_VS() : When_VS_Switch_Pressed_Seen()

Purpose : &*L This event defines when Vertical Speed

mode is to be selected. L*&

END MACRO

MACRO Deselect_VS() :

TABLE

When_VS_Switch_Pressed_Seen() : T * *;

When_Nonbasic_Vertical_Mode_Activated() : * T *;

When(Modes = Off) : * * T;

END TABLE

Purpose : &*L This event defines when Vertical Speed mode

is to be deselected. L*&

END MACRO

/**************************************************************/

/*L \exports L*/

/**************************************************************/

STATE_VARIABLE Is_VS_Selected: Boolean

PARENT : NONE

INITIAL_VALUE : FALSE
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CLASSIFICATION: CONTROLLED

EQUALS ..VS = Selected IF TRUE

Purpose : &*L Indicates if VS mode is selected. L*&

END STATE_VARIABLE

STATE_VARIABLE Is_VS_Active: Boolean

PARENT : NONE

INITIAL_VALUE : FALSE

CLASSIFICATION: CONTROLLED

EQUALS ..VS = Selected IF TRUE

Purpose : &*L Indicates if VS mode is active. L*&

Comment : &*L Even though VS Selected and VS Active are

the same thing, this variable is introduced to maintain a

common interface across modes. L*&

END STATE_VARIABLE

MACRO When_VS_Activated() :

TABLE

Select_VS() : T;

PREV_STEP(..VS) = Selected : F;

END TABLE

Purpose : &*L This signal occurs when Vertical Speed mode

is activated. L*&

Comment : &*L This event is defined this way to avoid

circular dependencies. It would be preferable to define

it as When(VS = Selected). L*&

END MACRO

/**************************************************************/

/*L \encapsulated L*/

/**************************************************************/

STATE_VARIABLE VS: Base_State

PARENT : Modes.On

INITIAL_VALUE : UNDEFINED

CLASSIFICATION : State

TRANSITION UNDEFINED TO Cleared IF NOT Select_VS()

TRANSITION UNDEFINED TO Selected IF Select_VS()

TRANSITION Cleared TO Selected IF Select_VS()

TRANSITION Selected to Cleared IF Deselect_VS()

Purpose : &*L This variable maintains the current base

state of Vertical Speed mode, i.e., whether it is

cleared or selected. L*&

END STATE_VARIABLE
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/**********************************************************************/

/*L \sectionp{Flight Control Panel (FCP)}

L*/

/**********************************************************************/

/**************************************************************/

/*L \exports L*/

/**************************************************************/

MACRO When_FD_Switch_Pressed() : When(FD_Switch = ON)

Purpose : &*L This event indicates when the FD switch

associated with this FGS is pressed. L*&

Comment: &*L This is redefined as a macro to simplify verification. L*&

END MACRO

MACRO When_FD_Switch_Pressed_Seen():

TABLE

When_FD_Switch_Pressed() : T;

No_Higher_Event_Than_FD_Switch_Pressed() : T;

END TABLE

Purpose : &*L This event indicates when the FD switch is pressed

and no higher priority event has occurred. L*&

END MACRO

MACRO No_Higher_Event_Than_FD_Switch_Pressed():

TABLE

When_HDG_Switch_Pressed() : F;

No_Higher_Event_Than_HDG_Switch_Pressed() : T;

When_VS_Switch_Pressed() : F;

No_Higher_Event_Than_VS_Switch_Pressed() : T;

END TABLE

Purpose : &*L This event occurs when no event with a priority

higher than pressing the FD switch has occurred. L*&

END MACRO

MACRO When_HDG_Switch_Pressed() : When(HDG_Switch = ON)

Purpose : &*L This event indicates when the HDG switch is pressed. L*&

Comment: &*L This is redefined as a macro to simplify verification. L*&

END MACRO

MACRO When_HDG_Switch_Pressed_Seen() :

TABLE

When_HDG_Switch_Pressed() : T;

No_Higher_Event_Than_HDG_Switch_Pressed() : T;

END TABLE

Purpose : &*L This event indicates when the HDG switch
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pressed and no higher priority event has occurred. L*&

END MACRO

MACRO No_Higher_Event_Than_HDG_Switch_Pressed(): TRUE

Purpose : &*L This event occurs when no event with a priority

higher than pressing the HDG switch has occurred. L*&

END MACRO

MACRO When_VS_Switch_Pressed() : When(VS_Switch = ON)

Purpose : &*L This event indicates when the VS switch is pressed. L*&

Comment: &*L This is redefined as a macro to simplify verification. L*&

END MACRO

MACRO When_VS_Switch_Pressed_Seen() :

TABLE

When_VS_Switch_Pressed() : T;

No_Higher_Event_Than_VS_Switch_Pressed() : T;

END TABLE

Purpose : &*L This event indicates when the VS switch

pressed and no higher priority event has occurred. L*&

END MACRO

MACRO No_Higher_Event_Than_VS_Switch_Pressed(): TRUE

Purpose : &*L This event occurs when no event with a priority

higher than pressing the VS switch has occurred. L*&

END MACRO

/**************************************************************/

/*L \encapsulated L*/

/**************************************************************/

TYPE_DEF Switch {OFF, ON}

TYPE_DEF Lamp {OFF, ON}

/**************************************************************/

/* FD Switch */

/**************************************************************/

IN_VARIABLE FD_Switch: Switch

INITIAL_VALUE : UNDEFINED

CLASSIFICATION: MONITORED

Purpose : &*L Holds the last sensed position of the

FD switch associated with this FGS. L*&

END IN_VARIABLE

/**************************************************************/

/* HDG Switch */

/**************************************************************/
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IN_VARIABLE HDG_Switch: Switch

INITIAL_VALUE : UNDEFINED

CLASSIFICATION: MONITORED

Purpose : &*L Holds the last sensed position of the

HDG switch. L*&

END IN_VARIABLE

/**************************************************************/

/* HDG Lamp */

/**************************************************************/

STATE_VARIABLE HDG_Lamp: Lamp

PARENT : NONE

INITIAL_VALUE : OFF

CLASSIFICATION: CONTROLLED

EQUALS ON IF ..HDG = Selected

EQUALS OFF IF NOT (..HDG = Selected)

Purpose : &*L Indicates if the HDG switch lamp

on the FCP should be on or off. L*&

END STATE_VARIABLE

/**************************************************************/

/* VS Switch */

/**************************************************************/

IN_VARIABLE VS_Switch: Switch

INITIAL_VALUE : UNDEFINED

CLASSIFICATION: MONITORED

Purpose : &*L Holds the last sensed position of the

VS switch. L*&

END IN_VARIABLE

/**************************************************************/

/* VS Lamp */

/**************************************************************/

STATE_VARIABLE VS_Lamp: Lamp

PARENT : NONE

INITIAL_VALUE : OFF

CLASSIFICATION: CONTROLLED

EQUALS ON IF ..VS = Selected

EQUALS OFF IF NOT (..VS = Selected)

Purpose : &*L Indicates if the VS switch lamp

should be on or off. L*&

END STATE_VARIABLE

/**********************************************************************/

/*L \sectionp{FGS Inputs}

This section defines the physical interface for all inputs to the FGS.

The input variables associated with these fields are defined in the

part of the specification to which they are logically related.

L*/
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/**********************************************************************/

/**** Autocoded inputs for [ToyFGS01] interface [This] ****/

MESSAGE This_Input_Msg {

FdSwi IS Switch,

HdgSwi IS Switch,

VsSwi IS Switch}

/**** Autocoded inputs for [ToyFGS01] interface [This] ****/

IN_INTERFACE This_Input :

MIN_SEP : UNDEFINED

MAX_SEP : UNDEFINED

INPUT_ACTION : READ(This_Input_Msg)

HANDLER:

CONDITION : TRUE

ASSIGNMENT

FD_Switch := FdSwi,

HDG_Switch := HdgSwi,

VS_Switch := VsSwi

END ASSIGNMENT

END HANDLER

END IN_INTERFACE

/**********************************************************************/

/*L \sectionp{FGS Outputs}

This section defines the physical interface for all outputs from the

FGS. The output variables associated with these fields are defined in

the part of the specification to which they are logically related.

L*/

/**********************************************************************/

/**** Autocoded outputs for [ToyFGS01] interface [This] ****/

MESSAGE This_Output_Msg {

FdOn IS Boolean,

FGSActive IS Boolean,

HdgLamp IS Lamp,

HdgSel IS Boolean,

ModesOn IS Boolean,

PthSel IS Boolean,

RollSel IS Boolean,

VsLamp IS Lamp,

VsSel IS Boolean}

/**** Autocoded outputs for [ToyFGS01] interface [This] ****/

OUT_INTERFACE This_Output:

MIN_SEP : UNDEFINED

MAX_SEP : UNDEFINED

OUTPUT_ACTION : PUBLISH(This_Output_Msg)

HANDLER:

CONDITION : TABLE

CHANGED(FD_Cues_On) : T * * * * * * *;

CHANGED(HDG_Lamp) : * T * * * * * *;

CHANGED(Is_HDG_Selected) : * * T * * * * *;

CHANGED(Mode_Annunciations_On) : * * * T * * * *;
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CHANGED(Is_PITCH_Selected) : * * * * T * * *;

CHANGED(Is_ROLL_Selected) : * * * * * T * *;

CHANGED(VS_Lamp) : * * * * * * T *;

CHANGED(Is_VS_Selected) : * * * * * * * T;

END TABLE

ASSIGNMENT

FdOn := FD_Cues_On,

FGSActive := TRUE,

HdgLamp := HDG_Lamp,

HdgSel := Is_HDG_Selected,

ModesOn := Mode_Annunciations_On,

PthSel := Is_PITCH_Selected,

RollSel := Is_ROLL_Selected,

VsLamp := VS_Lamp,

VsSel := Is_VS_Selected

END ASSIGNMENT

ACTION : SEND

END HANDLER

END OUT_INTERFACE

A.2 FGS-01 in Lurch

The RSML-e model in the section above is translated into the following Lurch
input specification.

enum Switch {Switch_OFF, Switch_ON, Switch_Undefined} FD_Switch, FD_Switch_prev, HDG_Switch,

HDG_Switch_prev, VS_Switch, VS_Switch_prev;

enum Base_State {Base_State_Cleared, Base_State_Selected, Base_State_Undefined} HDG, HDG_prev,

ROLL, ROLL_prev, VS, VS_prev, PITCH, PITCH_prev;

enum On_Off {On_Off_Off, On_Off_On, On_Off_Undefined} Onside_FD, Onside_FD_prev, Modes,

Modes_prev;

enum BOOLEAN {BOOLEAN_False = 0, BOOLEAN_True = 1, BOOLEAN_Undefined = 2} FD_Cues_On,

FD_Cues_On_prev, Mode_Annunciations_On, Mode_Annunciations_On_prev, Is_ROLL_Selected,

Is_ROLL_Selected_prev, Is_ROLL_Active, Is_ROLL_Active_prev, Is_HDG_Selected,

Is_HDG_Selected_prev, Is_VS_Selected, Is_VS_Selected_prev, Is_VS_Active, Is_VS_Active_prev,

Is_HDG_Active, Is_HDG_Active_prev, Is_PITCH_Selected, Is_PITCH_Selected_prev,

Is_PITCH_Active, Is_PITCH_Active_prev;

enum Lamp {Lamp_OFF, Lamp_ON, Lamp_Undefined} HDG_Lamp, HDG_Lamp_prev, VS_Lamp, VS_Lamp_prev;

void before(void) {

FD_Switch = Switch_Undefined;

FD_Switch_prev = Switch_Undefined;

HDG_Switch = Switch_Undefined;

HDG_Switch_prev = Switch_Undefined;

VS_Switch = Switch_Undefined;

VS_Switch_prev = Switch_Undefined;

HDG = Base_State_Undefined;

HDG_prev = Base_State_Undefined;

ROLL = Base_State_Undefined;

ROLL_prev = Base_State_Undefined;

VS = Base_State_Undefined;

VS_prev = Base_State_Undefined;

PITCH = Base_State_Undefined;
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PITCH_prev = Base_State_Undefined;

Onside_FD = On_Off_Off;

Onside_FD_prev = On_Off_Undefined;

Modes = On_Off_Off;

Modes_prev = On_Off_Undefined;

FD_Cues_On = BOOLEAN_False;

FD_Cues_On_prev = BOOLEAN_Undefined;

Mode_Annunciations_On = BOOLEAN_False;

Mode_Annunciations_On_prev = BOOLEAN_Undefined;

Is_ROLL_Selected = BOOLEAN_False;

Is_ROLL_Selected_prev = BOOLEAN_Undefined;

Is_ROLL_Active = BOOLEAN_False;

Is_ROLL_Active_prev = BOOLEAN_Undefined;

Is_HDG_Selected = BOOLEAN_False;

Is_HDG_Selected_prev = BOOLEAN_Undefined;

Is_VS_Selected = BOOLEAN_False;

Is_VS_Selected_prev = BOOLEAN_Undefined;

Is_VS_Active = BOOLEAN_False;

Is_VS_Active_prev = BOOLEAN_Undefined;

Is_HDG_Active = BOOLEAN_False;

Is_HDG_Active_prev = BOOLEAN_Undefined;

Is_PITCH_Selected = BOOLEAN_False;

Is_PITCH_Selected_prev = BOOLEAN_Undefined;

Is_PITCH_Active = BOOLEAN_False;

Is_PITCH_Active_prev = BOOLEAN_Undefined;

HDG_Lamp = Lamp_OFF;

HDG_Lamp_prev = Lamp_Undefined;

VS_Lamp = Lamp_OFF;

VS_Lamp_prev = Lamp_Undefined;

}

%%

Onside_FD=Off;

Onside_FD=Off; 0, ((!(FD_Switch_prev == Switch_ON) && (FD_Switch == Switch_ON)) ||

(!(HDG_Switch_prev == Switch_ON) && (HDG_Switch == Switch_ON)) ||

(!(VS_Switch_prev == Switch_ON) && (VS_Switch == Switch_ON)));

-, {Onside_FD = On_Off_On;}; Onside_FD=On;

Onside_FD=On; 0, ((!(FD_Switch_prev == Switch_ON) && (FD_Switch == Switch_ON)) &&

(!(!(HDG_Switch_prev == Switch_ON) && (HDG_Switch == Switch_ON))) &&

(!(!(VS_Switch_prev == Switch_ON) && (VS_Switch == Switch_ON))));

-, {Onside_FD = On_Off_Off;}; Onside_FD=Off;

Onside_FD_prev=Undefined;

Onside_FD_prev=On; Onside_FD=Off, 19; -, {Onside_FD_prev = On_Off_Off;}; Onside_FD_prev=Off;

Onside_FD_prev=Undefined; Onside_FD=Off, 19; -, {Onside_FD_prev = On_Off_Off;};

Onside_FD_prev=Off;

Onside_FD_prev=Off; Onside_FD=Undefined, 19; -, {Onside_FD_prev= On_Off_Undefined;};

Onside_FD_prev=Undefined;

Onside_FD_prev=Off; Onside_FD=On, 19; -, {Onside_FD_prev = On_Off_On;}; Onside_FD_prev=On;

Onside_FD_prev=Undefined; Onside_FD=On, 19; -, {Onside_FD_prev = On_Off_On;}; Onside_FD_prev=On;

Onside_FD_prev=On; Onside_FD=Undefined, 19; -, {Onside_FD_prev= On_Off_Undefined;};

Onside_FD_prev=Undefined;

Modes=Off;

Modes=Off; 1, ((Onside_FD == On_Off_On)); -, {Modes = On_Off_On;}; Modes=On;

Modes=On; 1, ((Onside_FD == On_Off_Off)); -, {Modes = On_Off_Off;}; Modes=Off;
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Modes_prev=Undefined;

Modes_prev=On; Modes=Off, 19; -, {Modes_prev = On_Off_Off;}; Modes_prev=Off;

Modes_prev=Undefined; Modes=Off, 19; -, {Modes_prev = On_Off_Off;}; Modes_prev=Off;

Modes_prev=Off; Modes=Undefined, 19; -, {Modes_prev= On_Off_Undefined;}; Modes_prev=Undefined;

Modes_prev=Off; Modes=On, 19; -, {Modes_prev = On_Off_On;}; Modes_prev=On;

Modes_prev=Undefined; Modes=On, 19; -, {Modes_prev = On_Off_On;}; Modes_prev=On;

Modes_prev=On; Modes=Undefined, 19; -, {Modes_prev= On_Off_Undefined;}; Modes_prev=Undefined;

HDG=Undefined;

HDG=Cleared; 2, ((Modes == On_Off_Undefined) || (Modes != On_Off_On));

-, {HDG = Base_State_Undefined;}; HDG=Undefined;

HDG=Selected; 2, ((Modes == On_Off_Undefined) || (Modes != On_Off_On));

-, {HDG = Base_State_Undefined;}; HDG=Undefined;

HDG=Undefined; 2, ((!(!(HDG_Switch_prev == Switch_ON) && (HDG_Switch == Switch_ON))) &&

(Modes != On_Off_Undefined) && (Modes == On_Off_On)); -, {HDG = Base_State_Cleared;};

HDG=Cleared;

HDG=Undefined; 2, ((!(HDG_Switch_prev == Switch_ON) && (HDG_Switch == Switch_ON)) &&

(Modes != On_Off_Undefined) && (Modes == On_Off_On)); -, {HDG = Base_State_Selected;};

HDG=Selected;

HDG=Cleared; 2, ((!(HDG_Switch_prev == Switch_ON) && (HDG_Switch == Switch_ON)) &&

(Modes != On_Off_Undefined) && (Modes == On_Off_On)); -, {HDG = Base_State_Selected;};

HDG=Selected;

HDG=Selected; 2, ((!(HDG_Switch_prev == Switch_ON) && (HDG_Switch == Switch_ON)) &&

(Modes != On_Off_Undefined) && (Modes == On_Off_On) || (!(HDG_Switch_prev == Switch_ON) &&

(HDG_Switch == Switch_ON)) && (!(HDG_prev == Base_State_Selected)) &&

(Modes != On_Off_Undefined) && (Modes == On_Off_On) || (!(Modes_prev == On_Off_Off) &&

(Modes == On_Off_Off)) && (Modes != On_Off_Undefined) && (Modes == On_Off_On));

-, {HDG = Base_State_Cleared;}; HDG=Cleared;

HDG_prev=Undefined;

HDG_prev=Selected; HDG=Cleared, 19; -, {HDG_prev = Base_State_Cleared;}; HDG_prev=Cleared;

HDG_prev=Undefined; HDG=Cleared, 19; -, {HDG_prev = Base_State_Cleared;}; HDG_prev=Cleared;

HDG_prev=Cleared; HDG=Undefined, 19; -, {HDG_prev= Base_State_Undefined;}; HDG_prev=Undefined;

HDG_prev=Cleared; HDG=Selected, 19; -, {HDG_prev = Base_State_Selected;}; HDG_prev=Selected;

HDG_prev=Undefined; HDG=Selected, 19; -, {HDG_prev = Base_State_Selected;}; HDG_prev=Selected;

HDG_prev=Selected; HDG=Undefined, 19; -, {HDG_prev= Base_State_Undefined;}; HDG_prev=Undefined;

FD_Cues_On=False;

FD_Cues_On=Undefined; 3, ((Onside_FD == On_Off_On)); -, {FD_Cues_On = BOOLEAN_True;};

FD_Cues_On=True;

FD_Cues_On=False; 3, ((Onside_FD == On_Off_On)); -, {FD_Cues_On = BOOLEAN_True;};

FD_Cues_On=True;

FD_Cues_On=Undefined; 3, ((!(Onside_FD == On_Off_On))); -, {FD_Cues_On = BOOLEAN_False;};

FD_Cues_On=False;

FD_Cues_On=True; 3, ((!(Onside_FD == On_Off_On))); -, {FD_Cues_On = BOOLEAN_False;};

FD_Cues_On=False;

FD_Cues_On_prev=Undefined;

FD_Cues_On_prev=True; FD_Cues_On=Undefined, 19; -, {FD_Cues_On_prev = BOOLEAN_Undefined;};

FD_Cues_On_prev=Undefined;

FD_Cues_On_prev=False; FD_Cues_On=Undefined, 19; -, {FD_Cues_On_prev = BOOLEAN_Undefined;};

FD_Cues_On_prev=Undefined;

FD_Cues_On_prev=Undefined; FD_Cues_On=True, 19; -, {FD_Cues_On_prev = BOOLEAN_True;};

FD_Cues_On_prev=True;
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FD_Cues_On_prev=False; FD_Cues_On=True, 19; -, {FD_Cues_On_prev = BOOLEAN_True;};

FD_Cues_On_prev=True;

FD_Cues_On_prev=Undefined; FD_Cues_On=False, 19; -, {FD_Cues_On_prev = BOOLEAN_False;};

FD_Cues_On_prev=False;

FD_Cues_On_prev=True; FD_Cues_On=False, 19; -, {FD_Cues_On_prev = BOOLEAN_False;};

FD_Cues_On_prev=False;

Mode_Annunciations_On=False;

Mode_Annunciations_On=Undefined; 4, ((Modes == On_Off_On));

-, {Mode_Annunciations_On = BOOLEAN_True;}; Mode_Annunciations_On=True;

Mode_Annunciations_On=False; 4, ((Modes == On_Off_On));

-, {Mode_Annunciations_On = BOOLEAN_True;}; Mode_Annunciations_On=True;

Mode_Annunciations_On=Undefined; 4, ((!(Modes == On_Off_On)));

-, {Mode_Annunciations_On = BOOLEAN_False;}; Mode_Annunciations_On=False;

Mode_Annunciations_On=True; 4, ((!(Modes == On_Off_On)));

-, {Mode_Annunciations_On = BOOLEAN_False;}; Mode_Annunciations_On=False;

Mode_Annunciations_On_prev=Undefined;

Mode_Annunciations_On_prev=True; Mode_Annunciations_On=Undefined, 19;

-, {Mode_Annunciations_On_prev = BOOLEAN_Undefined;};

Mode_Annunciations_On_prev=Undefined;

Mode_Annunciations_On_prev=False; Mode_Annunciations_On=Undefined, 19;

-, {Mode_Annunciations_On_prev = BOOLEAN_Undefined;};

Mode_Annunciations_On_prev=Undefined;

Mode_Annunciations_On_prev=Undefined; Mode_Annunciations_On=True, 19;

-, {Mode_Annunciations_On_prev = BOOLEAN_True;};

Mode_Annunciations_On_prev=True;

Mode_Annunciations_On_prev=False; Mode_Annunciations_On=True, 19;

-, {Mode_Annunciations_On_prev = BOOLEAN_True;};

Mode_Annunciations_On_prev=True;

Mode_Annunciations_On_prev=Undefined; Mode_Annunciations_On=False, 19;

-, {Mode_Annunciations_On_prev = BOOLEAN_False;};

Mode_Annunciations_On_prev=False;

Mode_Annunciations_On_prev=True; Mode_Annunciations_On=False, 19;

-, {Mode_Annunciations_On_prev = BOOLEAN_False;};

Mode_Annunciations_On_prev=False;

Is_HDG_Active=False;

Is_HDG_Active=Undefined; 5, ((HDG == Base_State_Selected));

-, {Is_HDG_Active = BOOLEAN_True;}; Is_HDG_Active=True;

Is_HDG_Active=False; 5, ((HDG == Base_State_Selected));

-, {Is_HDG_Active = BOOLEAN_True;}; Is_HDG_Active=True;

Is_HDG_Active=Undefined; 5, ((!(HDG == Base_State_Selected)));

-, {Is_HDG_Active = BOOLEAN_False;}; Is_HDG_Active=False;

Is_HDG_Active=True; 5, ((!(HDG == Base_State_Selected)));

-, {Is_HDG_Active = BOOLEAN_False;}; Is_HDG_Active=False;

Is_HDG_Active_prev=Undefined;

Is_HDG_Active_prev=True; Is_HDG_Active=Undefined, 19;

-, {Is_HDG_Active_prev = BOOLEAN_Undefined;}; Is_HDG_Active_prev=Undefined;

Is_HDG_Active_prev=False; Is_HDG_Active=Undefined, 19;

-, {Is_HDG_Active_prev = BOOLEAN_Undefined;}; Is_HDG_Active_prev=Undefined;

Is_HDG_Active_prev=Undefined; Is_HDG_Active=True, 19;

-, {Is_HDG_Active_prev = BOOLEAN_True;}; Is_HDG_Active_prev=True;

Is_HDG_Active_prev=False; Is_HDG_Active=True, 19;

-, {Is_HDG_Active_prev = BOOLEAN_True;}; Is_HDG_Active_prev=True;

Is_HDG_Active_prev=Undefined; Is_HDG_Active=False, 19;
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-, {Is_HDG_Active_prev = BOOLEAN_False;}; Is_HDG_Active_prev=False;

Is_HDG_Active_prev=True; Is_HDG_Active=False, 19;

-, {Is_HDG_Active_prev = BOOLEAN_False;}; Is_HDG_Active_prev=False;

ROLL=Undefined;

ROLL=Cleared; 6, ((Modes == On_Off_Undefined) || (Modes != On_Off_On));

-, {ROLL = Base_State_Undefined;}; ROLL=Undefined;

ROLL=Selected; 6, ((Modes == On_Off_Undefined) || (Modes != On_Off_On));

-, {ROLL = Base_State_Undefined;}; ROLL=Undefined;

ROLL=Undefined; 6, ((Is_HDG_Active == 1) && (!(Modes == On_Off_On)) &&

(Modes != On_Off_Undefined) && (Modes == On_Off_On)); -, {ROLL = Base_State_Cleared;};

ROLL=Cleared;

ROLL=Undefined; 6, ((!(Is_HDG_Active == 1)) && (Modes == On_Off_On) &&

(Modes != On_Off_Undefined) && (Modes == On_Off_On)); -, {ROLL = Base_State_Selected;};

ROLL=Selected;

ROLL=Cleared; 6, ((!(Is_HDG_Active == 1)) && (Modes == On_Off_On) &&

(Modes != On_Off_Undefined) && (Modes == On_Off_On)); -, {ROLL = Base_State_Selected;};

ROLL=Selected;

ROLL=Selected; 6, ((!(HDG_Switch_prev == Switch_ON) && (HDG_Switch == Switch_ON)) &&

(!(HDG_prev == Base_State_Selected)) && (Modes != On_Off_Undefined) &&

(Modes == On_Off_On) || (!(Modes_prev == On_Off_Off) && (Modes == On_Off_Off)) &&

(Modes != On_Off_Undefined) && (Modes == On_Off_On)); -, {ROLL = Base_State_Cleared;};

ROLL=Cleared;

ROLL_prev=Undefined;

ROLL_prev=Selected; ROLL=Cleared, 19; -, {ROLL_prev = Base_State_Cleared;};

ROLL_prev=Cleared;

ROLL_prev=Undefined; ROLL=Cleared, 19; -, {ROLL_prev = Base_State_Cleared;};

ROLL_prev=Cleared;

ROLL_prev=Cleared; ROLL=Undefined, 19; -, {ROLL_prev= Base_State_Undefined;};

ROLL_prev=Undefined;

ROLL_prev=Cleared; ROLL=Selected, 19; -, {ROLL_prev = Base_State_Selected;};

ROLL_prev=Selected;

ROLL_prev=Undefined; ROLL=Selected, 19; -, {ROLL_prev = Base_State_Selected;};

ROLL_prev=Selected;

ROLL_prev=Selected; ROLL=Undefined, 19; -, {ROLL_prev= Base_State_Undefined;};

ROLL_prev=Undefined;

Is_ROLL_Selected=False;

Is_ROLL_Selected=Undefined; 7, ((ROLL == Base_State_Selected));

-, {Is_ROLL_Selected = BOOLEAN_True;}; Is_ROLL_Selected=True;

Is_ROLL_Selected=False; 7, ((ROLL == Base_State_Selected));

-, {Is_ROLL_Selected = BOOLEAN_True;}; Is_ROLL_Selected=True;

Is_ROLL_Selected=Undefined; 7, ((!(ROLL == Base_State_Selected)));

-, {Is_ROLL_Selected = BOOLEAN_False;}; Is_ROLL_Selected=False;

Is_ROLL_Selected=True; 7, ((!(ROLL == Base_State_Selected)));

-, {Is_ROLL_Selected = BOOLEAN_False;}; Is_ROLL_Selected=False;

Is_ROLL_Selected_prev=Undefined;

Is_ROLL_Selected_prev=True; Is_ROLL_Selected=Undefined, 19;

-, {Is_ROLL_Selected_prev = BOOLEAN_Undefined;}; Is_ROLL_Selected_prev=Undefined;

Is_ROLL_Selected_prev=False; Is_ROLL_Selected=Undefined, 19;

-, {Is_ROLL_Selected_prev = BOOLEAN_Undefined;}; Is_ROLL_Selected_prev=Undefined;

Is_ROLL_Selected_prev=Undefined; Is_ROLL_Selected=True, 19;

-, {Is_ROLL_Selected_prev = BOOLEAN_True;}; Is_ROLL_Selected_prev=True;

Is_ROLL_Selected_prev=False; Is_ROLL_Selected=True, 19;
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-, {Is_ROLL_Selected_prev = BOOLEAN_True;}; Is_ROLL_Selected_prev=True;

Is_ROLL_Selected_prev=Undefined; Is_ROLL_Selected=False, 19;

-, {Is_ROLL_Selected_prev = BOOLEAN_False;}; Is_ROLL_Selected_prev=False;

Is_ROLL_Selected_prev=True; Is_ROLL_Selected=False, 19;

-, {Is_ROLL_Selected_prev = BOOLEAN_False;}; Is_ROLL_Selected_prev=False;

Is_ROLL_Active=False;

Is_ROLL_Active=Undefined; 8, ((ROLL == Base_State_Selected));

-, {Is_ROLL_Active = BOOLEAN_True;}; Is_ROLL_Active=True;

Is_ROLL_Active=False; 8, ((ROLL == Base_State_Selected));

-, {Is_ROLL_Active = BOOLEAN_True;}; Is_ROLL_Active=True;

Is_ROLL_Active=Undefined; 8, ((!(ROLL == Base_State_Selected)));

-, {Is_ROLL_Active = BOOLEAN_False;}; Is_ROLL_Active=False;

Is_ROLL_Active=True; 8, ((!(ROLL == Base_State_Selected)));

-, {Is_ROLL_Active = BOOLEAN_False;}; Is_ROLL_Active=False;

Is_ROLL_Active_prev=Undefined;

Is_ROLL_Active_prev=True; Is_ROLL_Active=Undefined, 19;

-, {Is_ROLL_Active_prev = BOOLEAN_Undefined;}; Is_ROLL_Active_prev=Undefined;

Is_ROLL_Active_prev=False; Is_ROLL_Active=Undefined, 19;

-, {Is_ROLL_Active_prev = BOOLEAN_Undefined;}; Is_ROLL_Active_prev=Undefined;

Is_ROLL_Active_prev=Undefined; Is_ROLL_Active=True, 19;

-, {Is_ROLL_Active_prev = BOOLEAN_True;}; Is_ROLL_Active_prev=True;

Is_ROLL_Active_prev=False; Is_ROLL_Active=True, 19;

-, {Is_ROLL_Active_prev = BOOLEAN_True;}; Is_ROLL_Active_prev=True;

Is_ROLL_Active_prev=Undefined; Is_ROLL_Active=False, 19;

-, {Is_ROLL_Active_prev = BOOLEAN_False;}; Is_ROLL_Active_prev=False;

Is_ROLL_Active_prev=True; Is_ROLL_Active=False, 19;

-, {Is_ROLL_Active_prev = BOOLEAN_False;}; Is_ROLL_Active_prev=False;

Is_HDG_Selected=False;

Is_HDG_Selected=Undefined; 9, ((HDG == Base_State_Selected));

-, {Is_HDG_Selected = BOOLEAN_True;}; Is_HDG_Selected=True;

Is_HDG_Selected=False; 9, ((HDG == Base_State_Selected));

-, {Is_HDG_Selected = BOOLEAN_True;}; Is_HDG_Selected=True;

Is_HDG_Selected=Undefined; 9, ((!(HDG == Base_State_Selected)));

-, {Is_HDG_Selected = BOOLEAN_False;}; Is_HDG_Selected=False;

Is_HDG_Selected=True; 9, ((!(HDG == Base_State_Selected)));

-, {Is_HDG_Selected = BOOLEAN_False;}; Is_HDG_Selected=False;

Is_HDG_Selected_prev=Undefined;

Is_HDG_Selected_prev=True; Is_HDG_Selected=Undefined, 19;

-, {Is_HDG_Selected_prev = BOOLEAN_Undefined;}; Is_HDG_Selected_prev=Undefined;

Is_HDG_Selected_prev=False; Is_HDG_Selected=Undefined, 19;

-, {Is_HDG_Selected_prev = BOOLEAN_Undefined;}; Is_HDG_Selected_prev=Undefined;

Is_HDG_Selected_prev=Undefined; Is_HDG_Selected=True, 19;

-, {Is_HDG_Selected_prev = BOOLEAN_True;}; Is_HDG_Selected_prev=True;

Is_HDG_Selected_prev=False; Is_HDG_Selected=True, 19;

-, {Is_HDG_Selected_prev = BOOLEAN_True;}; Is_HDG_Selected_prev=True;

Is_HDG_Selected_prev=Undefined; Is_HDG_Selected=False, 19;

-, {Is_HDG_Selected_prev = BOOLEAN_False;}; Is_HDG_Selected_prev=False;

Is_HDG_Selected_prev=True; Is_HDG_Selected=False, 19;

-, {Is_HDG_Selected_prev = BOOLEAN_False;}; Is_HDG_Selected_prev=False;

VS=Undefined;

VS=Cleared; 10, ((Modes == On_Off_Undefined) || (Modes != On_Off_On));

-, {VS = Base_State_Undefined;}; VS=Undefined;
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VS=Selected; 10, ((Modes == On_Off_Undefined) || (Modes != On_Off_On));

-, {VS = Base_State_Undefined;}; VS=Undefined;

VS=Undefined; 10, ((!(!(VS_Switch_prev == Switch_ON) && (VS_Switch == Switch_ON))) &&

(Modes != On_Off_Undefined) && (Modes == On_Off_On)); -, {VS = Base_State_Cleared;};

VS=Cleared;

VS=Undefined; 10, ((!(VS_Switch_prev == Switch_ON) && (VS_Switch == Switch_ON)) &&

(Modes != On_Off_Undefined) && (Modes == On_Off_On)); -, {VS = Base_State_Selected;};

VS=Selected;

VS=Cleared; 10, ((!(VS_Switch_prev == Switch_ON) && (VS_Switch == Switch_ON)) &&

(Modes != On_Off_Undefined) && (Modes == On_Off_On)); -, {VS = Base_State_Selected;};

VS=Selected;

VS=Selected; 10, ((!(VS_Switch_prev == Switch_ON) && (VS_Switch == Switch_ON)) &&

(Modes != On_Off_Undefined) && (Modes == On_Off_On) || (!(VS_Switch_prev == Switch_ON) &&

(VS_Switch == Switch_ON)) && (!(VS_prev == Base_State_Selected)) &&

(Modes != On_Off_Undefined) && (Modes == On_Off_On) || (!(Modes_prev == On_Off_Off) &&

(Modes == On_Off_Off)) && (Modes != On_Off_Undefined) && (Modes == On_Off_On));

-, {VS = Base_State_Cleared;}; VS=Cleared;

VS_prev=Undefined;

VS_prev=Selected; VS=Cleared, 19; -, {VS_prev = Base_State_Cleared;}; VS_prev=Cleared;

VS_prev=Undefined; VS=Cleared, 19; -, {VS_prev = Base_State_Cleared;}; VS_prev=Cleared;

VS_prev=Cleared; VS=Undefined, 19; -, {VS_prev= Base_State_Undefined;}; VS_prev=Undefined;

VS_prev=Cleared; VS=Selected, 19; -, {VS_prev = Base_State_Selected;}; VS_prev=Selected;

VS_prev=Undefined; VS=Selected, 19; -, {VS_prev = Base_State_Selected;}; VS_prev=Selected;

VS_prev=Selected; VS=Undefined, 19; -, {VS_prev= Base_State_Undefined;}; VS_prev=Undefined;

Is_VS_Selected=False;

Is_VS_Selected=Undefined; 11, ((VS == Base_State_Selected));

-, {Is_VS_Selected = BOOLEAN_True;}; Is_VS_Selected=True;

Is_VS_Selected=False; 11, ((VS == Base_State_Selected));

-, {Is_VS_Selected = BOOLEAN_True;}; Is_VS_Selected=True;

Is_VS_Selected=Undefined; 11, ((!(VS == Base_State_Selected)));

-, {Is_VS_Selected = BOOLEAN_False;}; Is_VS_Selected=False;

Is_VS_Selected=True; 11, ((!(VS == Base_State_Selected)));

-, {Is_VS_Selected = BOOLEAN_False;}; Is_VS_Selected=False;

Is_VS_Selected_prev=Undefined;

Is_VS_Selected_prev=True; Is_VS_Selected=Undefined, 19;

-, {Is_VS_Selected_prev = BOOLEAN_Undefined;}; Is_VS_Selected_prev=Undefined;

Is_VS_Selected_prev=False; Is_VS_Selected=Undefined, 19;

-, {Is_VS_Selected_prev = BOOLEAN_Undefined;}; Is_VS_Selected_prev=Undefined;

Is_VS_Selected_prev=Undefined; Is_VS_Selected=True, 19;

-, {Is_VS_Selected_prev = BOOLEAN_True;}; Is_VS_Selected_prev=True;

Is_VS_Selected_prev=False; Is_VS_Selected=True, 19;

-, {Is_VS_Selected_prev = BOOLEAN_True;}; Is_VS_Selected_prev=True;

Is_VS_Selected_prev=Undefined; Is_VS_Selected=False, 19;

-, {Is_VS_Selected_prev = BOOLEAN_False;}; Is_VS_Selected_prev=False;

Is_VS_Selected_prev=True; Is_VS_Selected=False, 19;

-, {Is_VS_Selected_prev = BOOLEAN_False;}; Is_VS_Selected_prev=False;

Is_VS_Active=False;

Is_VS_Active=Undefined; 12, ((VS == Base_State_Selected)); -, {Is_VS_Active = BOOLEAN_True;};

Is_VS_Active=True;

Is_VS_Active=False; 12, ((VS == Base_State_Selected)); -, {Is_VS_Active = BOOLEAN_True;};

Is_VS_Active=True;

Is_VS_Active=Undefined; 12, ((!(VS == Base_State_Selected)));
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-, {Is_VS_Active = BOOLEAN_False;}; Is_VS_Active=False;

Is_VS_Active=True; 12, ((!(VS == Base_State_Selected))); -, {Is_VS_Active = BOOLEAN_False;};

Is_VS_Active=False;

Is_VS_Active_prev=Undefined;

Is_VS_Active_prev=True; Is_VS_Active=Undefined, 19;

-, {Is_VS_Active_prev = BOOLEAN_Undefined;}; Is_VS_Active_prev=Undefined;

Is_VS_Active_prev=False; Is_VS_Active=Undefined, 19;

-, {Is_VS_Active_prev = BOOLEAN_Undefined;}; Is_VS_Active_prev=Undefined;

Is_VS_Active_prev=Undefined; Is_VS_Active=True, 19;

-, {Is_VS_Active_prev = BOOLEAN_True;}; Is_VS_Active_prev=True;

Is_VS_Active_prev=False; Is_VS_Active=True, 19;

-, {Is_VS_Active_prev = BOOLEAN_True;}; Is_VS_Active_prev=True;

Is_VS_Active_prev=Undefined; Is_VS_Active=False, 19;

-, {Is_VS_Active_prev = BOOLEAN_False;}; Is_VS_Active_prev=False;

Is_VS_Active_prev=True; Is_VS_Active=False, 19;

-, {Is_VS_Active_prev = BOOLEAN_False;}; Is_VS_Active_prev=False;

PITCH=Undefined;

PITCH=Cleared; 13, ((Modes == On_Off_Undefined) || (Modes != On_Off_On));

-, {PITCH = Base_State_Undefined;}; PITCH=Undefined;

PITCH=Selected; 13, ((Modes == On_Off_Undefined) || (Modes != On_Off_On));

-, {PITCH = Base_State_Undefined;}; PITCH=Undefined;

PITCH=Undefined; 13, ((Is_VS_Active == 1) && (!(Modes == On_Off_On)) &&

(Modes != On_Off_Undefined) && (Modes == On_Off_On));

-, {PITCH = Base_State_Cleared;}; PITCH=Cleared;

PITCH=Undefined; 13, ((!(Is_VS_Active == 1)) && (Modes == On_Off_On) &&

(Modes != On_Off_Undefined) && (Modes == On_Off_On));

-, {PITCH = Base_State_Selected;}; PITCH=Selected;

PITCH=Cleared; 13, ((!(Is_VS_Active == 1)) && (Modes == On_Off_On) &&

(Modes != On_Off_Undefined) && (Modes == On_Off_On));

-, {PITCH = Base_State_Selected;}; PITCH=Selected;

PITCH=Selected; 13, ((!(VS_Switch_prev == Switch_ON) && (VS_Switch == Switch_ON)) &&

(!(VS_prev == Base_State_Selected)) && (Modes != On_Off_Undefined) &&

(Modes == On_Off_On) || (!(Modes_prev == On_Off_Off) && (Modes == On_Off_Off)) &&

(Modes != On_Off_Undefined) && (Modes == On_Off_On)); -, {PITCH = Base_State_Cleared;};

PITCH=Cleared;

PITCH_prev=Undefined;

PITCH_prev=Selected; PITCH=Cleared, 19; -, {PITCH_prev = Base_State_Cleared;};

PITCH_prev=Cleared;

PITCH_prev=Undefined; PITCH=Cleared, 19; -, {PITCH_prev = Base_State_Cleared;};

PITCH_prev=Cleared;

PITCH_prev=Cleared; PITCH=Undefined, 19; -, {PITCH_prev= Base_State_Undefined;};

PITCH_prev=Undefined;

PITCH_prev=Cleared; PITCH=Selected, 19; -, {PITCH_prev = Base_State_Selected;};

PITCH_prev=Selected;

PITCH_prev=Undefined; PITCH=Selected, 19; -, {PITCH_prev = Base_State_Selected;};

PITCH_prev=Selected;

PITCH_prev=Selected; PITCH=Undefined, 19; -, {PITCH_prev= Base_State_Undefined;};

PITCH_prev=Undefined;

Is_PITCH_Selected=False;

Is_PITCH_Selected=Undefined; 14, ((PITCH == Base_State_Selected));

-, {Is_PITCH_Selected = BOOLEAN_True;}; Is_PITCH_Selected=True;

Is_PITCH_Selected=False; 14, ((PITCH == Base_State_Selected));

45



-, {Is_PITCH_Selected = BOOLEAN_True;}; Is_PITCH_Selected=True;

Is_PITCH_Selected=Undefined; 14, ((!(PITCH == Base_State_Selected)));

-, {Is_PITCH_Selected = BOOLEAN_False;}; Is_PITCH_Selected=False;

Is_PITCH_Selected=True; 14, ((!(PITCH == Base_State_Selected)));

-, {Is_PITCH_Selected = BOOLEAN_False;}; Is_PITCH_Selected=False;

Is_PITCH_Selected_prev=Undefined;

Is_PITCH_Selected_prev=True; Is_PITCH_Selected=Undefined, 19;

-, {Is_PITCH_Selected_prev = BOOLEAN_Undefined;}; Is_PITCH_Selected_prev=Undefined;

Is_PITCH_Selected_prev=False; Is_PITCH_Selected=Undefined, 19;

-, {Is_PITCH_Selected_prev = BOOLEAN_Undefined;}; Is_PITCH_Selected_prev=Undefined;

Is_PITCH_Selected_prev=Undefined; Is_PITCH_Selected=True,

19; -, {Is_PITCH_Selected_prev = BOOLEAN_True;}; Is_PITCH_Selected_prev=True;

Is_PITCH_Selected_prev=False; Is_PITCH_Selected=True, 19;

-, {Is_PITCH_Selected_prev = BOOLEAN_True;}; Is_PITCH_Selected_prev=True;

Is_PITCH_Selected_prev=Undefined; Is_PITCH_Selected=False, 19;

-, {Is_PITCH_Selected_prev = BOOLEAN_False;}; Is_PITCH_Selected_prev=False;

Is_PITCH_Selected_prev=True; Is_PITCH_Selected=False, 19;

-, {Is_PITCH_Selected_prev = BOOLEAN_False;}; Is_PITCH_Selected_prev=False;

Is_PITCH_Active=False;

Is_PITCH_Active=Undefined; 15, ((PITCH == Base_State_Selected));

-, {Is_PITCH_Active = BOOLEAN_True;}; Is_PITCH_Active=True;

Is_PITCH_Active=False; 15, ((PITCH == Base_State_Selected));

-, {Is_PITCH_Active = BOOLEAN_True;}; Is_PITCH_Active=True;

Is_PITCH_Active=Undefined; 15, ((!(PITCH == Base_State_Selected)));

-, {Is_PITCH_Active = BOOLEAN_False;}; Is_PITCH_Active=False;

Is_PITCH_Active=True; 15, ((!(PITCH == Base_State_Selected)));

-, {Is_PITCH_Active = BOOLEAN_False;}; Is_PITCH_Active=False;

Is_PITCH_Active_prev=Undefined;

Is_PITCH_Active_prev=True; Is_PITCH_Active=Undefined, 19;

-, {Is_PITCH_Active_prev = BOOLEAN_Undefined;}; Is_PITCH_Active_prev=Undefined;

Is_PITCH_Active_prev=False; Is_PITCH_Active=Undefined, 19;

-, {Is_PITCH_Active_prev = BOOLEAN_Undefined;}; Is_PITCH_Active_prev=Undefined;

Is_PITCH_Active_prev=Undefined; Is_PITCH_Active=True, 19;

-, {Is_PITCH_Active_prev = BOOLEAN_True;}; Is_PITCH_Active_prev=True;

Is_PITCH_Active_prev=False; Is_PITCH_Active=True, 19;

-, {Is_PITCH_Active_prev = BOOLEAN_True;}; Is_PITCH_Active_prev=True;

Is_PITCH_Active_prev=Undefined; Is_PITCH_Active=False, 19;

-, {Is_PITCH_Active_prev = BOOLEAN_False;}; Is_PITCH_Active_prev=False;

Is_PITCH_Active_prev=True; Is_PITCH_Active=False, 19;

-, {Is_PITCH_Active_prev = BOOLEAN_False;}; Is_PITCH_Active_prev=False;

HDG_Lamp=OFF;

HDG_Lamp=OFF; 16, ((HDG == Base_State_Selected)); -, {HDG_Lamp = Lamp_ON;}; HDG_Lamp=ON;

HDG_Lamp=Undefined; 16, ((HDG == Base_State_Selected)); -, {HDG_Lamp = Lamp_ON;}; HDG_Lamp=ON;

HDG_Lamp=ON; 16, ((!(HDG == Base_State_Selected))); -, {HDG_Lamp = Lamp_OFF;}; HDG_Lamp=OFF;

HDG_Lamp=Undefined; 16, ((!(HDG == Base_State_Selected))); -, {HDG_Lamp = Lamp_OFF;}; HDG_Lamp=OFF;

HDG_Lamp_prev=Undefined;

HDG_Lamp_prev=ON; HDG_Lamp=OFF, 19; -, {HDG_Lamp_prev = Lamp_OFF;}; HDG_Lamp_prev=OFF;

HDG_Lamp_prev=Undefined; HDG_Lamp=OFF, 19; -, {HDG_Lamp_prev = Lamp_OFF;}; HDG_Lamp_prev=OFF;

HDG_Lamp_prev=OFF; HDG_Lamp=Undefined, 19; -, {HDG_Lamp_prev= Lamp_Undefined;};

HDG_Lamp_prev=Undefined;

HDG_Lamp_prev=OFF; HDG_Lamp=ON, 19; -, {HDG_Lamp_prev = Lamp_ON;}; HDG_Lamp_prev=ON;
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HDG_Lamp_prev=Undefined; HDG_Lamp=ON, 19; -, {HDG_Lamp_prev = Lamp_ON;}; HDG_Lamp_prev=ON;

HDG_Lamp_prev=ON; HDG_Lamp=Undefined, 19; -, {HDG_Lamp_prev= Lamp_Undefined;};

HDG_Lamp_prev=Undefined;

VS_Lamp=OFF;

VS_Lamp=OFF; 17, ((VS == Base_State_Selected)); -, {VS_Lamp = Lamp_ON;}; VS_Lamp=ON;

VS_Lamp=Undefined; 17, ((VS == Base_State_Selected)); -, {VS_Lamp = Lamp_ON;}; VS_Lamp=ON;

VS_Lamp=ON; 17, ((!(VS == Base_State_Selected))); -, {VS_Lamp = Lamp_OFF;}; VS_Lamp=OFF;

VS_Lamp=Undefined; 17, ((!(VS == Base_State_Selected))); -, {VS_Lamp = Lamp_OFF;}; VS_Lamp=OFF;

VS_Lamp_prev=Undefined;

VS_Lamp_prev=ON; VS_Lamp=OFF, 19; -, {VS_Lamp_prev = Lamp_OFF;}; VS_Lamp_prev=OFF;

VS_Lamp_prev=Undefined; VS_Lamp=OFF, 19; -, {VS_Lamp_prev = Lamp_OFF;}; VS_Lamp_prev=OFF;

VS_Lamp_prev=OFF; VS_Lamp=Undefined, 19; -, {VS_Lamp_prev= Lamp_Undefined;};

VS_Lamp_prev=Undefined;

VS_Lamp_prev=OFF; VS_Lamp=ON, 19; -, {VS_Lamp_prev = Lamp_ON;}; VS_Lamp_prev=ON;

VS_Lamp_prev=Undefined; VS_Lamp=ON, 19; -, {VS_Lamp_prev = Lamp_ON;}; VS_Lamp_prev=ON;

VS_Lamp_prev=ON; VS_Lamp=Undefined, 19; -, {VS_Lamp_prev= Lamp_Undefined;};

VS_Lamp_prev=Undefined;

FD_Switch=Undefined;

FD_Switch=OFF; 20; -, {FD_Switch = Switch_OFF;}; FD_Switch=OFF;

FD_Switch=OFF; 20; -, {FD_Switch = Switch_ON;}; FD_Switch=ON;

FD_Switch=Undefined; 20; -, {FD_Switch = Switch_OFF;}; FD_Switch=OFF;

FD_Switch=OFF; 20; -, {FD_Switch = Switch_Undefined;}; FD_Switch=Undefined;

FD_Switch=ON; 20; -, {FD_Switch = Switch_OFF;}; FD_Switch=OFF;

FD_Switch=ON; 20; -, {FD_Switch = Switch_ON;}; FD_Switch=ON;

FD_Switch=Undefined; 20; -, {FD_Switch = Switch_ON;}; FD_Switch=ON;

FD_Switch=ON; 20; -, {FD_Switch = Switch_Undefined;}; FD_Switch=Undefined;

FD_Switch=Undefined; 20; -, {FD_Switch = Switch_Undefined;}; FD_Switch=Undefined;

FD_Switch_prev=Undefined;

FD_Switch_prev=OFF; FD_Switch=Undefined, 19; -, {FD_Switch_prev = Switch_Undefined;};

FD_Switch_prev=Undefined;

FD_Switch_prev=Undefined; FD_Switch=OFF, 19; -, {FD_Switch_prev = Switch_OFF;};

FD_Switch_prev=OFF;

FD_Switch_prev=OFF; FD_Switch=ON, 19; -, {FD_Switch_prev = Switch_ON;}; FD_Switch_prev=ON;

FD_Switch_prev=ON; FD_Switch=Undefined, 19; -, {FD_Switch_prev = Switch_Undefined;};

FD_Switch_prev=Undefined;

FD_Switch_prev=Undefined; FD_Switch=ON, 19; -, {FD_Switch_prev = Switch_ON;};

FD_Switch_prev=ON;

FD_Switch_prev=ON; FD_Switch=OFF, 19; -, {FD_Switch_prev = Switch_OFF;}; FD_Switch_prev=OFF;

HDG_Switch=Undefined;

HDG_Switch=OFF; 20; -, {HDG_Switch = Switch_OFF;}; HDG_Switch=OFF;

HDG_Switch=OFF; 20; -, {HDG_Switch = Switch_ON;}; HDG_Switch=ON;

HDG_Switch=Undefined; 20; -, {HDG_Switch = Switch_OFF;}; HDG_Switch=OFF;

HDG_Switch=OFF; 20; -, {HDG_Switch = Switch_Undefined;}; HDG_Switch=Undefined;

HDG_Switch=ON; 20; -, {HDG_Switch = Switch_OFF;}; HDG_Switch=OFF;

HDG_Switch=ON; 20; -, {HDG_Switch = Switch_ON;}; HDG_Switch=ON;

HDG_Switch=Undefined; 20; -, {HDG_Switch = Switch_ON;}; HDG_Switch=ON;

HDG_Switch=ON; 20; -, {HDG_Switch = Switch_Undefined;}; HDG_Switch=Undefined;

HDG_Switch=Undefined; 20; -, {HDG_Switch = Switch_Undefined;}; HDG_Switch=Undefined;

HDG_Switch_prev=Undefined;

HDG_Switch_prev=OFF; HDG_Switch=Undefined, 19; -, {HDG_Switch_prev = Switch_Undefined;};
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HDG_Switch_prev=Undefined;

HDG_Switch_prev=Undefined; HDG_Switch=OFF, 19; -, {HDG_Switch_prev = Switch_OFF;};

HDG_Switch_prev=OFF;

HDG_Switch_prev=OFF; HDG_Switch=ON, 19; -, {HDG_Switch_prev = Switch_ON;}; HDG_Switch_prev=ON;

HDG_Switch_prev=ON; HDG_Switch=Undefined, 19; -, {HDG_Switch_prev = Switch_Undefined;};

HDG_Switch_prev=Undefined;

HDG_Switch_prev=Undefined; HDG_Switch=ON, 19; -, {HDG_Switch_prev = Switch_ON;};

HDG_Switch_prev=ON;

HDG_Switch_prev=ON; HDG_Switch=OFF, 19; -, {HDG_Switch_prev = Switch_OFF;};

HDG_Switch_prev=OFF;

VS_Switch=Undefined;

VS_Switch=OFF; 20; -, {VS_Switch = Switch_OFF;}; VS_Switch=OFF;

VS_Switch=OFF; 20; -, {VS_Switch = Switch_ON;}; VS_Switch=ON;

VS_Switch=Undefined; 20; -, {VS_Switch = Switch_OFF;}; VS_Switch=OFF;

VS_Switch=OFF; 20; -, {VS_Switch = Switch_Undefined;}; VS_Switch=Undefined;

VS_Switch=ON; 20; -, {VS_Switch = Switch_OFF;}; VS_Switch=OFF;

VS_Switch=ON; 20; -, {VS_Switch = Switch_ON;}; VS_Switch=ON;

VS_Switch=Undefined; 20; -, {VS_Switch = Switch_ON;}; VS_Switch=ON;

VS_Switch=ON; 20; -, {VS_Switch = Switch_Undefined;}; VS_Switch=Undefined;

VS_Switch=Undefined; 20; -, {VS_Switch = Switch_Undefined;}; VS_Switch=Undefined;

VS_Switch_prev=Undefined;

VS_Switch_prev=OFF; VS_Switch=Undefined, 19; -, {VS_Switch_prev = Switch_Undefined;};

VS_Switch_prev=Undefined;

VS_Switch_prev=Undefined; VS_Switch=OFF, 19; -, {VS_Switch_prev = Switch_OFF;};

VS_Switch_prev=OFF;

VS_Switch_prev=OFF; VS_Switch=ON, 19; -, {VS_Switch_prev = Switch_ON;}; VS_Switch_prev=ON;

VS_Switch_prev=ON; VS_Switch=Undefined, 19; -, {VS_Switch_prev = Switch_Undefined;};

VS_Switch_prev=Undefined;

VS_Switch_prev=Undefined; VS_Switch=ON, 19; -, {VS_Switch_prev = Switch_ON;};

VS_Switch_prev=ON;

VS_Switch_prev=ON; VS_Switch=OFF, 19; -, {VS_Switch_prev = Switch_OFF;}; VS_Switch_prev=OFF;

0;

0; -; -; 1;

1; -; -; 2;

2; -; -; 3;

3; -; -; 4;

4; -; -; 5;

5; -; -; 6;

6; -; -; 7;

7; -; -; 8;

8; -; -; 9;

9; -; -; 10;

10; -; -; 11;

11; -; -; 12;

12; -; -; 13;

13; -; -; 14;

14; -; -; 15;

15; -; -; 16;

16; -; -; 17;

17; -; -; 18;

18; -; -; 19;

19; -; -; 20;

20; -; -; 0;

48



Appendix B

RSML-e and Nimbus

49



 

 

The NIMBUS Environment  
for 

 Specification of Safety Critical Systems 
DRAFT 

 
For the RSML-e Specification Language 

 
 

 

 
 

Developed by 
 

The Critical Systems Research Group (CriSys) 
Department of Computer Science and Engineering 

University of Minnesota 
Minneapolis, Minnesota 

 
 

Manual By 
Mike W. Whalen,  Mats P.E. Heimdahl, and Jeffrey M. Thompson,  

  
 



 

 

 

 

 

 

 

 



 

 

 
Table of Contents 

1 Introduction and Document Overview.................................................................................... 55 

1.1 Constructing Specifications ..................................................................................................55 

1.2 Simulating and Analyzing Specifications.............................................................................55 

1.3 Examples...............................................................................................................................56 

1.4 Technical Documentation and Research Results..................................................................56 

2 Getting Started with NIMBUS .................................................................................................. 57 

2.1 System Requirements ...........................................................................................................57 

2.2 Installation and Setup Instructions........................................................................................57 

2.2.1 Acquiring the Installation Files .....................................................................................57 

2.2.2 Installing the Tools........................................................................................................57 

2.3 Tools of the NIMBUS Environment .......................................................................................58 

2.3.1 NimbusSim....................................................................................................................58 

2.3.2 NIMBUS Manager...........................................................................................................58 

2.3.3 NIMBUSChannel Client..................................................................................................58 

3 Introduction to RSML-e ........................................................................................................... 59 

3.1 Synchronous Languages .......................................................................................................61 

3.2 Variables and States Variables .............................................................................................63 

3.3 Types.....................................................................................................................................64 

3.4 Variables ...............................................................................................................................64 

3.5 Input Variables......................................................................................................................69 

3.6 Interfaces...............................................................................................................................70 

3.7 Expressions in RSML-e .........................................................................................................76 

3.8 Macros and Functions...........................................................................................................77 

3.9 Advanced Language Issues...................................................................................................80 

3.9.1 Circular Dependencies ..................................................................................................80 

3.9.2 Transition Issues and Equivalence Class Evaluation ....................................................80 

3.9.3 Receive Handlers...........................................................................................................80 

3.9.4 PREV_VALUE and PREV_STEP................................................................................81 



 

 

4 NIMBUSSim Graphical User Interface ..................................................................................... 82 

4.1 The NIMBUSSim Interface.....................................................................................................82 

4.2 Overview...............................................................................................................................82 

4.3 Details ...................................................................................................................................83 

4.3.1 File Menu Options.........................................................................................................83 

4.3.2 System Options .............................................................................................................84 

4.3.3 View Menu....................................................................................................................86 

4.3.4 Simulation Menu and Toolbar.......................................................................................87 

4.3.5 State Hierarchy Menu and Toolbar ...............................................................................89 

4.3.6 Tree View......................................................................................................................91 

4.3.7 State Hierarchy Diagram...............................................................................................93 

4.3.8 Status Bar ......................................................................................................................93 

4.3.9 Stopping Conditions......................................................................................................94 

4.3.10 Watch Window..............................................................................................................96 

4.3.11 Channel Connector........................................................................................................96 

4.4 Running a Simulation ...........................................................................................................97 

4.5 Command Reference.............................................................................................................99 

5 Using NIMBUSChannel .......................................................................................................... 101 

5.1 Introduction.........................................................................................................................101 

5.2 Components of NIMBUSChannel.........................................................................................103 

5.2.1 NIMBUSSim .................................................................................................................103 

5.2.2 NIMBUSChannel Client................................................................................................104 

5.2.3 NIMBUS Manager.........................................................................................................104 

5.2.4 Behind the Scenes .......................................................................................................106 

5.3 Connecting Other Applications ..........................................................................................107 

5.3.1 Building a Visual Basic Client ....................................................................................108 

5.3.2 Building a C++ Client .................................................................................................109 

5.4 Troubleshooting and Common Issues.................................................................................110 

6 References ............................................................................................................................. 111 

Appendix A  - Using the Airlock Interface ................................................................................. 112 

A.1 Message Specifications.......................................................................................................112 



 

 

A.2 Creating Specification Interfaces........................................................................................113 

A.3 Connecting the RSML Channels ........................................................................................115 

A.4 Executing the Nimbus Simulator and the VB Driver .........................................................116 

Appendix B  - Textual Grammar of RSML-e .............................................................................. 119 
 
 





 

Introduction to RSML-e and Nimbus               Page 55 
 

1 Introduction and Document Overview 

The Critical Systems Research Group originally developed the NIMBUS environment for safety 
critical systems at the University of Minnesota.  The environment provided a framework for the 
development of software for safety critical systems, including simulation, code generation, and 
visualization.  It supported the RSML (Requirements State Machine Language) formalism.  In 
cooperation with Safeware Engineering Corporation, the existing tools were modified to support 
the RSML-e language and expanded to include a graphical user interface for the simulation 
engine, a construction tool for the specifications, and implementation of analysis. 

This document contains information necessary to be productive with the NIMBUS environment. 

1.1 Constructing Specifications 

Specifications in the Nimbus environment are simple ASCII test files that can be created with 
any text editor. We are currently working on support for creating RSML-e specifications in the 
WinEdt editor. This support, however, is not available at this time.  When the specification is 
ready, it is readable by the NimbusSim tool and can be simulated or analyzed.  The following 
document describes the way in which specifications are constructed in the Nimbus environment. 

• RSML-e Language Manual: The language manual provides a basic introduction to the 
syntax and semantics of the RSML-e language.  Through the use of a simple example, the 
pump control system, the reader will gain an understanding of the features of the language 
and how they can be used. 

1.2 Simulating and Analyzing Specifications 

The NimbusSim tools provide the Nimbus environment with the ability to simulate and analyze 
specifications.  The NimbusSim application itself provides the ability to load and graphically 
display specifications.  Furthermore, the analyst can execute and analyze the specification.  In 
addition to the NimbusSim simulator, the Nimbus environment provides for inter-process 
communication to be used for input and output of the simulations.  This feature is supported by 
several applications: the NimbusManager and COM objects for integration to C++ and Visual 
Basic, and other associated clients.  This framework allows the RSML-e specification to be 
executed with a variety of other components that accurately model the environment of the 
controller.  All this is described in the simulation and analysis documentation: 

• NimbusSim Graphical User Interface Manual: This document describes the features of 
the NimbusSim graphical user interface menus, toolbars, and command window.  It discusses 
how to load specifications, layout the state hierarchy, simulate specifications, connect 
channels, and perform analysis. 

• NimbusChannel Users Guide: This guide describes how NimbusSim can be connected to 
other applications via the NimbusChannel framework built on top of Microsoft's Component 
Object Model (COM).  It discusses both which clients are currently available and how to 
create clients in C++ or Visual Basic using the provided COM objects and wrapper classes. 
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1.3 Examples 

Examples are an important part of learning any new specification language.  Research is ongoing 
at the University of Minnesota and elsewhere into how to structure and construct specifications 
in the RSML-e language.  Even so, we provide here one completely worked-out example 
showing various features of the language and how they can be used. 

• The Clean Room: Consider a room that is supposed to be sealed at all times. To enter the 
room you have to go through an airlock. To get in, you have to open the front door, step into 
the air-lock, close the door, open the inside door, step into the room, and finally close the 
inside door.  This simple example will be used to illustrate many concepts from the RSML-e 
language. 

Additional examples will be added as time progresses.  

1.4 Technical Documentation and Research Results 

Any documentation for the RSML-e language and its associated tools would be incomplete 
without a discussion of the formal semantics (a major feature of the language) as well as the 
research results that led to the creation of RSML-e . 

These documents are currently available from the Critical Systems research groups at the 
University of Minnesota.  
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2 Getting Started with NIMBUS 

NIMBUS is a powerful and flexible framework for the construction of specifications for safety-
critical systems that is, nonetheless, easy to use.  To get started, read the release notes provided 
with the installation files. These notes contain important information about late-breaking 
features, compatibility and installation issues, and more. 

2.1 System Requirements 

The NIMBUS environment runs under Windows 95, Windows 98, Windows NT 4.0, and 
Windows 2000.  To take full advantage of the environment, users should have the following 
software (not provided by the University of Minnesota) installed on their workstations: 

• Microsoft Internet Explorer 4.0 or higher (required by HTML help) 

Nevertheless, NIMBUS can be used without this additional software; the user will simply not be 
able to utilize the features of the HTML format help (HTML help can be browsed with any web 
browser). 

2.2 Installation and Setup Instructions 

2.2.1 Acquiring the Installation Files 

The installation files for the NIMBUS environment are downloadable from the Critical Systems 
Research Group's web site at the following URL.  You must obtain a username and password 
from either the Critical Systems Research Group to successfully download the distribution.  The 
URL for the download is: 

http://www.cs.umn.edu/crisys/NIMBUS/download 
 
Follow the instructions given on the page to complete the download of the NIMBUS Environment 
installation files. 

2.2.2 Installing the Tools 

To install the tools, follow the simple steps below: 

1. Download the installation file from the web (or from the CD) 

2. Unzip the installation file into a temporary directory. 

3. Double click on the NIMBUS Installer program file 

4. Follow the instructions through the installation 
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Important Note: If you already have a previous version of NIMBUS installed on your machine, 
you must first uninstall NIMBUS before you can attempt a new install. We do not know the source 
of the problems, but the installation program (provided by Microsoft) tends to freeze up or 
exhibits other kinds of unexpected behaviors if installing over an existing version is attempted. 
Thus, uninstall first and then install a new version.  

2.3 Tools of the NIMBUS Environment 

The NIMBUS environment encompasses a number of different tools.  Thus, a number of items are 
contained in the start menu program group that is created by the setup program.  The paragraphs 
below describe the tools that are available in the environment, their function, and where the 
documentation about their features can be located. 

2.3.1 NimbusSim 

NIMBUSSim is the full-featured simulation and analysis tool of the NIMBUS framework.  It allows 
you to perform simulation and analysis on RSML-e specifications, copy and paste specification 
layouts, produce testing scripts and more.  NIMBUSSim can be accessed with the NIMBUSSim 
icon from the program group created by setup. 

Documentation of NIMBUSSim can be found in the following places:  

• Application specific topics are found in the online help 

• The NIMBUSSim Graphical User Interface Manual 

2.3.2 NIMBUS Manager 

The NIMBUS Manager is the application that allows you to control the connections between 
various components in the NIMBUSChannel communication environment.  The NIMBUSManager 
allows you to connect and disconnect sources and destinations so that the correct systems 
configuration can be achieved.  The NIMBUS Manager can be accessed with the NIMBUS Manager 
icon from the program group created by setup.  Documentation of the NIMBUS Manager can be 
found in the NIMBUSChannel Users Guide. 

2.3.3 NIMBUSChannel Client 

The NIMBUSChannel Client is a simple client application written in C++ that allows the user to 
connect to the NIMBUSChannel framework and act as a source, destination, or observer on a 
channel. The NIMBUSChannel client can be accessed through the program group created by setup 
by selecting the NIMBUSChannel Client icon.  Documentation for the NIMBUSChannel Client can 
be found in the NIMBUSChannel Users Guide. 
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3 Introduction to RSML-e 

RSML-e is a finite-state machine based specification language that represents the evolution of the 
specification language RSML (Requirements State Machine Language).  RSML was designed 
during the specification of TCAS II (Traffic Alert and Collision Avoidance System II) by the 
Safety research group at the University of California, Irvine.  RSML was based on Statecharts, 
including such features as the event propagation mechanism and the notion of hierarchical state 
machines. 

RSML-e, a refinement and improvement of RSML, was created for a number of reasons.  Among 
them were the error prone use of the event propagation mechanism and the difficulty of 
reusability in RSML specifications.   

The purpose of RSML-e, and the associated tools in the NIMBUS environment, is to allow analysts 
to specify safety critical systems with high reliability.  RSML-e contributes to this goal by being a 
readable specification language that is usable and understandable by all stakeholders in a 
specification effort.  Therefore, the language is suitable for manual inspections and reviews.  
Nevertheless, RSML-e is a fully formal specification language; thus, analysts can also perform 
formal analysis and simulation on the requirement model.  To achieve a high level of confidence, 
all three approaches (manual inspections, formal analysis, and simulation) must be used in 
concert.  This is enabled in the NIMBUS environment by the RSML-e language and its associated 
tool set. 

An RSML-e specification consists of a collection of variables, the next state relations for the 
variables, functions, macros, constants, and interfaces.  Variables describe the internal state of 
the system.  Interfaces describe how the specification interacts with the external environment. 
Functions and Macros are mechanisms for representing common expressions and predicates, 
respectively, in order to make specifications more concise. These constructs are discussed in the 
following sections with the context of a simple example: the clean room.   

The clean room specification is as follows: 

Consider a room that is supposed to be sealed at all times. To enter the room you have to 
go through an airlock. To get in, you have to open the front door, step into the air-lock, 
close the door, open the inside door, step into the room, and finally close the inside door.  
To open a door, a person must request the door using some means (e.g. a button).  Only 
one person should be allowed in the airlock at a time, and if the airlock is in use, other 
requests should be denied until the airlock is unoccupied.  At no point should both doors 
to the airlock be open, unless a power failure or catastrophic event occurs.  If both doors 
are open, then the clean room must be considered contaminated, with serious financial 
consequences. 

When entering the clean room, an individual must be “cleaned” using air scrubbers to 
remove particles from their clothes.  The duration for this cleaning is some application-
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defined constant.  Until the individual is clean, they should not be allowed into the clean 
room. 

The system shall provide two alarm features.  If an airlock is occupied for longer than a 
specified duration, a timeout alarm should be generated.  Also, in case of some system 
malfunction or other catastrophe, pressing buttons within the clean room and the airlock 
will generate a panic alarm.  In this event, both doors should be unlocked and people 
should be able to leave the clean room unhindered.  If an alarm is generated, it continues 
until an administrator resets the system. 

The clean room may have 1-n airlocks, all of which behave identically. 

In this manual, we have made a few simplifying assumptions to the clean room problem:  

• The clean room only contains one airlock  

• It is the administrator’s responsibility to ensure that the system is in a consistent state when 
the system is reset (i.e. no people in the airlocks) 

• The sensors/actuators do not malfunction 

• The cleaning interval is 60 seconds; the timeout interval is 5 minutes 

Here are the system inputs/outputs. 
 

Input: Description: 
panic_button: bool panic_button is true when any of the panic buttons are pressed 
reset_button: bool reset_button is true when a system reset request is generated 
inner_door_request: bool inner_door_request is true in the duration when a user is 

requesting to exit the clean room 
outer_door_request: bool outer_door_request is true in the duration when a user is 

requesting to enter the clean room 
inner_door_open: bool inner_door_open is true when the inner door is open 
outer_door_open: bool outer_door_open is true when the outer door is open 
airlock_occupied: bool airlock_occupied is true when the airlock is occupied (could be 

through a floor or motion sensor) 
clock: bool A clock pulse that is issued once per second 

 
 

Output: Description: 
inner_door_lock inner_door_lock is true when the inner door of the airlock is 

locked 
outer_door_lock outer_door_lock is true when the outer door of the airlock is 

locked 
decontaminate: bool decontaminate is true during the decontamination interval when 

the system should “scrub” a user who is entering the clean room 
panic_alarm: bool panic_alarm is true at the instant when a user presses the 

panic_button, and true thereafter until the reset_button has been 
pressed 
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timeout_alarm: bool timeout_alarm is true at the instant when the user has been in an 
airlock for longer than 300 seconds 

 

Once these inputs are set, it is pretty straightforward to describe the procedure for 
entering/exiting the airlock: 

1. Initially, both doors to the airlock are locked. 

2. The user requests to enter (exit) the airlock 

• If the airlock is ‘in-use’ the request is denied 

• Otherwise, unlock the outer (inner) door 

3. The user opens the outer (inner) door 

4. The user closes the outer (inner) door 

• If the airlock is occupied, then lock the outer (inner) door and proceed to the next stage 

• If the airlock is unoccupied, the user must have decided not to enter the airlock, so the 
airlock is no longer ‘in-use’ 

5. If the user is entering, then clean the user for 60 seconds 

6. Unlock the inner (outer) door and wait for the user to exit 

7. The user opens the door 

8. The user closes the door 

• If the airlock is still occupied, then the user must not yet have exited; repeat 

• If the airlock is unoccupied, then the process is complete and the airlock is no longer ‘in-
use’.   

 

3.1 Synchronous Languages 

The semantics of RSML-e puts it in a class of languages called synchronous languages. Since this 
class of languages may be largely unknown to the novice RSML-e user, we here include a short 
introduction.  

Synchronous languages were proposed as a software engineering tool in the late 1970s and 
independently in the programming language community in the late 1980s as a technique for 
modeling and constructing reactive (i.e. process control) systems.  As these systems often control 
the behavior of several cooperating machines, they are often most easily modeled as a set of 
cooperating concurrent tasks.  Synchronous languages provide primitives that allow 
programmers to naturally model this concurrent structure, and also to consider that their 
programs react instantaneously to external events [Halbwachs91].  By using this synchrony 
hypothesis, and enforcing certain constraints within a synchronous language, it is possible to 
create logically concurrent programs that are deterministic both in terms of functionality and 
time.   



 

Introduction to RSML-e and Nimbus               Page 62 
 

There are two main styles of synchronous languages: imperative and dataflow.  Imperative 
synchronous languages are quite similar to standard imperative languages like C or Ada, but are 
augmented with constructs to deal with process instantiation, communication, and termination.  
Unlike similar constructs in, for example, Ada, these constructs are considered logically 
instantaneous, and are essential to creating deterministic programs.  The leading example of this 
style is the programming language Esterel[Berry00].   

In contrast, dataflow languages are inspired by control theory.  Many of the engineers who 
design reactive systems model their systems as networks of operators transforming flows of data, 
and at a higher level by block diagrams that group these networks into reusable components.  
Dataflow languages allow these models to directly realize the software control system.   

As the basis of a high-level programming language, the dataflow model has several merits: 

• It is a completely functional model without side effects.  This feature makes the model well 
suited to formal verification and program transformation.  It also facilitates reuse, as a 
module will behave the same way in any context into which it is embedded. 

• It is a naturally parallel model, in which the only constraints on parallelism are enforced by 
the data-dependencies between variables.  This allows for parallel implementations to be 
realized, either in software, or directly in hardware. 

Dataflow models can be either synchronous or asynchronous.  In an asynchronous dataflow 
model, the outputs of the system are continually recomputed depending on the inputs to the 
system.  In the synchronous model, however, real-time is broken into a sequence of instants in 
which the model is recomputed.  The synchronous model is better suited to translation into a 
programming language, as it more naturally matches the behavior of a computer program.  
Therefore, all of the dataflow-style languages adopt some form of this approach. 

As an example, consider a system that computes the values of two variables, X and Y, based on 
4 inputs: a, b, c, and d: 
 

*

-

a
b
c
d

2

/ X

+ Y

X = 2a / (b - c)
Y = X + d

 
    (a)     (b) 

Figure 1: A dataflow model and its associated set of equations. 
 

This diagram is to be read left-to-right, with the inputs "flowing" through the system of operators 
to create the outputs at the right side.  The diagram can be represented more concisely as a set of 
equations, as shown at right.  We name the inputs to the dataflow model input variables and all 
variables that are computed by the model state variables. 
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The variables in a dataflow model are used to label a particular computation graph; they are not 
used as constraints.  Therefore, it is incorrect to view the equations as a set of constraints on the 
model: a set of equations such as {X = 2a/Y,  Y = X + d} does not correspond to an operator 
network because X and Y mutually refer to one another.  Such a system may have no solution or 
infinitely many solutions, so cannot be directly used as a deterministic program.  If viewed as a 
graph, these sets of equations have data dependency cycles, and are considered incorrect. 

However, in order for the language to be useful, we must be able to have mutual reference 
between variables.  To allow benign cyclic dependencies, a delay operator is added.   The 
operator returns the value of an expression, delayed one instant.  For example: {X = 2a / Y,   Y = 
delay(X, 1) + d} defines a system where X is equal to 2a divided by the current value of Y, while 
Y is equal to the previous value of X plus the current value of d.  The second parameter of the 
delay operator defines the value of the operator at the initial instant, when the previous value of 
X is undefined.  Systems of equations of this form always have a single solution.  The delay 
operator is also the mechanism for recording state about the model.  For example, we can 
construct a counter over the natural numbers by simply defining the set of equations {x := 
delay(x+1, 0)}.   

Finally, some notion of selection is added to assignment expressions.  Depending on the 
language, this notion can be realized as an if/then statement, a series of cases, or a set of 
transitions.  From these elements, at its core, a dataflow program can be viewed as simply a set 
of input variables and assignment equations of the form {X0 = E0, X1 = E1, ..., Xn = En} that must 
be acyclic in terms of data dependencies.   

RSML-e is a synchronous data-flow language of the structure described above.  

 

3.2 Variables and States Variables 

Variables are central to RSML-e. An RSML-e specification is constructed from variables 
organized in parallel or hierarchically (this will be explained in more detail below). We make a 
slight distinction between variables and state variables. State variables in RSML-e are simply 
variables that have graphical representation that will show up in the GUI during execution. In the 
remainder of this report we will use variables and state variables interchangeably—they are both 
referring to some variable in the model that is used to capture the system state.  

In other specification languages, states are often used to represent activities of the controller.  
This is a subtle, yet important, difference; the state of the system may or may not have anything 
to do with which particular activities the system is performing at any particular moment.  
Therefore, in RSML-e states can be thought of as more of a hierarchical enumerated type and are 
closer to traditional finite state machines than those found in other specification languages. 

Variable assignments in RSML-e govern how the state variables can change from one value to 
another—they capture the next state relation.  There are two styles of variable assignments—the 
transition style and the assignment style. Both styles will be illustrated below.  
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3.3 Types 

The various variables in an RSML-e specification must have a type. Thus, the types needed to 
model a system are often determined early during modeling. In this case, we will model open and 
closed doors, alarms that may be on or off, and doors that can be locked or unlocked. For the 
clean room, we start with the types below 
TYPE_DEF on_off { off, on }
TYPE_DEF door_status { closed, open }
TYPE_DEF door_lock_status { unlocked, locked }
TYPE_DEF button_status { not_pressed, pressed }

 

Type definitions in RSML-e simply declare a user defined enumerated type. Note here that all 
types in RSML-e contain an implicit value UNDEFINED. This value is used when we simply do 
not know what the value of a variable may be. This situation occurs, for example, at startup, 
when no input arrives, or when the variable is not relevant (the part of the variable hierarchy 
where it resided is not uses at the time). The issue of UNDEFINED will be revisited later in this 
manual. 

The grammar for type definitions is very simple.  
type_def : TYPE_DEF IDENTIFIER '{' enum_element_list '}'

;

enum_element_list : IDENTIFIER
| enum_element_list ',' IDENTIFIER
;

3.4 Variables 

When a variable is declared, we have to give it a type. This is achieved through a type reference 
or an implicit type declaration.  
type_ref : IDENTIFIER

| INTEGER_TYPE
| REAL_TYPE
| BOOLEAN_TYPE
| TIME
;

The clean room specification is straightforward to implement in RSML-e.  Using the RSML-e 
hierarchy constructs (discussed below), it is possible to directly visualize and control the 
relationships between the variables that describe the status of the airlock: 
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Example1
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Figure 2: NIMBUS visualization of clean room RSML-e specification 

At the top level, we have an airlock_status variable, which describes whether or not the airlock is 
occupied, along with variables detailing the status of alarms and door locks.  Under the 
airlock_status variable, we place the variables describing the process of entering and exiting the 
airlock.  These variables are only relevant when airlock_status is in entry or exit mode, 
respectively.   

This view of the state variables is the one produced by the NIMBUSSim RSML-e simulator.  It 
shows each variable value as a box with black text and a white background (this is the default in 
the tool—it can be customized by the user).  The possible values of a variable are joined with 
connecting lines.  Note, however, that these lines do not necessarily indicate that it is possible for 
the state variable to change from any of its values to any other of its values (see below, about 
assignment relations). Note: This visualization may change since CriSys are not quite satisfied 
with the information content.  The name of state variable appears above the connected states.  
State variables can be nested (as shown by the airlock_status variable).   
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When an RSML-e specification is loaded into the NIMBUSSim simulator, the simulator needs to 
assign some initial values to the state variables.  This initial value is determined by which states 
are marked with the INITIAL_VALUE keyword in the proceeding state definitions.  Thus, 
Figure 2 above shows the state hierarchy for the pump controller in the default configuration. 

The collection of all the active states in the state hierarchy can be thought of as the configuration 
of the machine.  The behavior of the specification is determined, in part, by the way that the state 
hierarchy changes from one configuration to another.  These changes in configurations are 
determined by the definition of transitions from one state to another.  Transitions are specified 
one state variable at a time. 

Consider the behavior of the airlock_status state variable.  This state variable is intended to 
capture the state of the airlock (is a person entering the room, exiting the room, or is the lock 
unoccupied). The definition of the state variable can be seen in Figure 3 below.  

STATE_VARIABLE airlock_status :
VALUES : {unoccupied, entry, exit}
PARENT : None
INITIAL_VALUE : unoccupied
CLASSIFICATION: State

Transition unoccupied TO exit IF inner_door_request

Transition unoccupied TO entry IF
TABLE

outer_door_request : T;
inner_door_request : F;

END TABLE

Transition exit TO unoccupied IF
TABLE

PREV_STEP(..airlock_exit) IN_STATE completed : T *;
reset_button : * T;

END TABLE

Transition entry TO unoccupied IF
TABLE

PREV_STEP(..airlock_entry) IN_STATE completed : T *;
reset_button : * T;

END TABLE

END STATE_VARIABLE

Figure 3: The definition of the airlock_status state variable.

 

The definition includes the name of the state variable, airlock_status and the possible values the 
variable can take on (note that all variables can take on the value UNDEFINED in addition to 
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any values defined in the variable definition—this will be discussed in detail later).  The next 
thing in the definition is the parent of the variable. This is the construct that allows us to 
organize variables in a hierarchy. For example, the variable airlock_entry has the parent 
airlock_status.entry (the value entry of airlock_status). The variable airlock_entry has no parent 
(it is on the top level) and this is indicated by the parent None. The CLASSIFICATION field of 
the variable definition is intended for suture extensions of the language. Currently, the field is 
ignored unless it states that this is a State variable. All variables classified as State variables will 
be visualized in the graphical user interface. Next in the definition, the possible values for the 
state variable are given as well as the conditions that must hold for the state variable to assume 
the value.  Essentially, each one of the statements represents a transition from one state (state 
variable value) to another state.  Note that some of the conditions in the specification are 
presented in a DNF form called And/Or tables. 

During their work on the TCAS specification, the Irvine group discovered that the traditional 
predicate logic statements traditionally used to capture the conditions on transitions did not scale 
well to the large, complex expressions in TCAS.  To combat this issue, they developed And/Or 
tables.  The tables contain a column of predicates.  To the right of the column of predicates are 
one or more columns of truth-values.  During evaluation (execution of the specification), the 
predicates at the left will have some values.  For a column in the table to be TRUE, the values of 
the predicates must “match up” with the truth-values indicated in one the columns (i.e., the 
predicate must the TRUE if there is a T in the column and FALSE if there is an F).  A * in the 
column denotes that we don’t care about the value of that particular predicate with respect to the 
column.  For an And/Or table to be TRUE, one of the columns must completely match (i.e., be 
TRUE). 

The conditions in the airlock_status state variable are relatively simple. Inner_door_request is a 
Boolean input variable that is used as a condition. We can also use abbreviations of more 
complex conditions (called macros) and various expressions involving integer and real variables, 
and time. A complete discussion of all the expressions allowed in RSML-e appears later in the 
document. 

In some instances we may want a state variable to take on a specific value independently of what 
value it had before—in essence we want transitions from ANY state to a certain state. In RSML-e 

we achieve this with a slightly different variant of the transition definition. As can be seen in 
Figure 4, we are allowed to state that a variable assumes a value when a condition is true 
(independently of what value it had previously). 

 
STATE_VARIABLE inner_door_lock : door_lock_status

PARENT: NONE
INITIAL_VALUE : locked
CLASSIFICATION : State

EQUALS unlocked IF inner_door_unlocked()
EQUALS locked IF !inner_door_unlocked()

END STATE_VARIABLE

Figure 4: The EQUALS style of transition definition. 
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The grammar for state variable definitions is given below.  

 
state_variable_def : STATE_VARIABLE IDENTIFIER array_decl ':'
variable_type_decl

PARENT ':' parent_decl
INITIAL_VALUE ':' expression
variable_numeric_decl
classification_def
case_list

END STATE_VARIABLE
;

variable_numeric_decl : /* empty */
| UNITS ':' IDENTIFIER

EXPECTED_MIN ':' expression
EXPECTED_MAX ':' expression

variable_type_decl : type_ref
| VALUES ':' '{' enum_element_list '}'

array_decl : /* empty */
| '[' expression TO expression ']'
;

parent_decl : NONE
| parent_name_path
;

parent_name_path : IDENTIFIER
| parent_name_path '.' IDENTIFIER
;

classification_def : /* empty */
| CLASSIFICATION ':' IDENTIFIER
;

type_ref : IDENTIFIER
| INTEGER_TYPE
| REAL_TYPE
| BOOLEAN_TYPE
| TIME
;

condition : TABLE
row_list
END TABLE
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| expression /* Must return BOOLEAN */
;

row_list : expression ':' truth_value_list ';'
| row_list expression ':' truth_value_list

';'
;

truth_value_list : truth_value
| truth_value truth_value_list
;

truth_value : 'T'
| 'F'
| '.'
| '*'

 

3.5 Input Variables  

Input variables in RSML-e allow you to model information about the environment of the system.  
For example, you might like to capture the inputs from sensors. The input variables are 
conceptually slightly different than the variables we discussed in the previous section—input 
variables can only be set by an interface when an interaction with the environment occurs. There 
is not notion of an output variable in RSML-e; any variable can be used to output information 
from a model. We do, however, encourage the use of dedicated variables that act as output 
variables. Variables (both input variables discussed here and the ‘normal’ variables discussed in 
the previous section) can be any one of the types that are present in the RSML-e type system: 
floating point, integer, time, or enumerated. 

A type of a variable (its possible values) can be declared separately in RSML-e, or it can be 
declared directly with the variable itself. The latter is called using an anonymous type since the 
type is never given a name and cannot be used in any other place of the specification. The other 
alternative is to declare a type explicitly and then use the type name when we declare the type of 
a variable (Figure 4).  

An input variable consists of an initial value, and (for non-enumerated type variables) an 
expected minimum, maximum, and units.  The definition of the panic_button from the clean 
room is shown in Figure 5.  The type of the variable is Boolean.  The definition of the 
panic_button does not require an expected minimum, expected maximum, or units since it is 
Boolean. Only variables of numeric types (integer and real) require those fields. There are no 
numeric variables in the clean room example—an example of a numeric variable from another 
specification (an avionics system) is included in Figure 6 for illustration.  
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IN_VARIABLE panic_button : boolean
INITIAL_VALUE : FALSE
CLASSIFICATION: MONITORED

END IN_VARIABLE

Figure 5: Boolean variable definition. 

 
IN_VARIABLE Altitude : INTEGER

INITIAL_VALUE : Undefined
UNITS : ft
EXPECTED_MIN : 0
EXPECTED_MAX : 40000

END IN_VARIABLE

Figure 6: An integer variable definition. 

 

3.6 Interfaces 

Interfaces define a number of properties related to how the specification can interact with its 
environment.  In RSML-e the interaction with the environment is achieved by providing or 
consuming messages over a communication channel. Since RSML-e is a synchronous language, 
we make the assumption that only one message is received at any point in time and that the 
message can be completely processed before another one arrives. If we want to model that many 
inputs can change simultaneously, we can put them all in the same message—the fields in a 
message can all change at the same time, but the fields in different messages cannot. Thus, 
RSML-e operates under a one-message assumption. An example of a message definition in the 
clean room is shown in Figure 7. A different message from an avionics application is shown in 
Figure 8. 

 
MESSAGE Update_Message {

f_panic_button IS boolean,
f_reset_button IS boolean,
f_inner_door_request IS boolean,
f_outer_door_request IS boolean,
f_inner_door_open IS boolean,
f_outer_door_open IS boolean,
f_airlock_occupied IS boolean

}

Figure 7: Message definition in the clean room. 
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MESSAGE AltitudeMessage {
Alt IS INTEGER,
aq IS AltitudeQualityType

}

Figure 8: Message definition for altitude. 

First, the interface defines the type of communication: Send-Receive or Publish-Read. Send-
Receive communication is equivalent to message passing scheme. Publish-Read communication, 
on the other hand, buffers the message on the channel so that a message that is published might 
be read several times by the reader. Second, interfaces define the properties of the 
communication, for example the expected minimum and maximum separation between messages 
over the channel.  Finally, the interfaces regulate the assignment of inputs to the specification to 
the input variables.  Using this feature, simple safety and liveness constraints can be imposed by 
the interfaces without considering the (potentially complex) function represented by the state 
machine and associated definitions. 

The interface for the clean room is given below (Figure 9).  The interface definition begins with 
a declaration of the name for this interface.  The simulator uses this name to hook the interface to 
actual communications channels from the environment.  Next, the expected minimum and 
maximum separation for messages over the channel is given.  The final part of the header for the 
input interface is the input action.  This determines (1) the type of communication and (2) which 
message will be received/read on the input channel. 

 
IN_INTERFACE Update_Interface :

MIN_SEP : UNDEFINED
MAX_SEP : UNDEFINED
INPUT_ACTION : RECEIVE(Update_Message)
HANDLER :

CONDITION : TRUE
ASSIGNMENT

panic_button := f_panic_button,
reset_button := f_reset_button,
inner_door_request := f_inner_door_request,
outer_door_request := f_outer_door_request,
inner_door_open := f_inner_door_open,
outer_door_open := f_outer_door_open,
airlock_occupied := f_airlock_occupied

END ASSIGNMENT
END HANDLER

END IN_INTERFACE

Figure 9: Interface definition for the clean room. 

 

The final section of the input interface consists of a number of handlers.  Handlers are similar to 
transitions in a state variable.  They have a condition, under which they will be executed.  If the 
condition is TRUE, then the handler will execute and the assignments will occur.  In the case in 
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Figure 9, the interface only has one handler and that handler will always be used (the guarding 
condition for the handler is simply true). A more complex interface from an avionics example is 
included in Figure 10. 

 
IN_INTERFACE AltitudeMessageInterface :

MIN_SEP : 50 MS
MAX_SEP : 100 MS
INPUT_ACTION : RECEIVE(AltitudeMessage)

RECEIVE_HANDLER :
CONDITION :

TABLE
Alt <= Altitude::EXPECTED_MAX : T;
Alt >= Altitude::EXPECTED_MIN : T;
END TABLE

ASSIGNMENT
Altitude := Alt,
AltitudeQuality := aq

END ASSIGNMENT
END HANDLER

 
RECEIVE_HANDLER :

CONDITION :
TABLE
Alt <= Altitude::EXPECTED_MAX : F *;
Alt >= Altitude::EXPECTED_MIN : * F;

END TABLE
ASSIGNMENT

Altitude := UNDEFINED,
AltitudeQuality := Bad

END ASSIGNMENT
END HANDLER

END IN_INTERFACE

Figure 10: More complex interface example from avionics. 
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The BNF grammar for input interfaces follows: 
in_interface_def : IN_INTERFACE IDENTIFIER ':'

MIN_SEP ':' expression
MAX_SEP ':' expression
INPUT_ACTION ':' in_interface_type_spec

'(' IDENTIFIER ')'
in_handler_list

END IN_INTERFACE
;

in_interface_type_spec : RECEIVE
| READ
;

in_handler_list : in_handler
| in_handler in_handler_list
;

in_handler : in_handler_type ':'
CONDITION ':' condition
in_assignment

END HANDLER
;

in_handler_type : RECEIVE_HANDLER
| HANDLER
;

in_assignment : /* empty */
| ASSIGNMENT

in_assignment_list
END ASSIGNMENT

;

in_assignment_list : identifier_name_path ASSIGN_TOKEN expression
| in_assignment_list ',' identifier_name_path

ASSIGN_TOKEN expression
;
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Output interfaces are similar to input interfaces.  An example of an output interface from the 
pump controller is given in Figure 11. Again, a more complex example from avionics is included 
in Figure 12. 
 
OUT_INTERFACE Actuator_Interface :

MIN_SEP : UNDEFINED
MAX_SEP : UNDEFINED
OUTPUT_ACTION : SEND(Actuator_Message)
HANDLER :

CONDITION : TRUE
ASSIGNMENT

f_inner_door_lock := inner_door_lock,
f_outer_door_lock := outer_door_lock,
f_decontaminate := decontaminate,
f_panic_alarm := panic_alarm,
f_timeout_alarm := timeout_alarm

END ASSIGNMENT
ACTION : SEND
END HANDLER

END OUT_INTERFACE 

Figure 11: Simple output interface. 
 

OUT_INTERFACE FaultDetectionInterface :
MIN_SEP : 50 MS
MAX_SEP : 200 MS

OUTPUT_ACTION : SEND(FaultMessage)

HANDLER :
CONDITION :

TABLE
ASWOpModes IN_STATE OK : T * ;
ASWOpModes IN_STATE FailureDetected : * T;

END TABLE

ASSIGNMENT
fault := FaultDetectedVariable

END ASSIGNMENT

ACTION : SEND
END HANDLER

END OUT_INTERFACE

Figure 12: More complex output interface from the avionics domain. 
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Finally, we provide the BNF grammar for the output interfaces.  
out_interface_def : OUT_INTERFACE IDENTIFIER ':'

MIN_SEP ':' expression
MAX_SEP ':' expression
OUTPUT_ACTION ':'

out_interface_type_spec '(' IDENTIFIER ')'
output_handler_list

END OUT_INTERFACE
;

out_interface_type_spec : SEND
| PUBLISH
;

output_handler_list : output_handler
| output_handler_list output_handler
;

output_handler : HANDLER ':'
CONDITION ':' condition
out_assignment
ACTION ':' out_handler_type

END HANDLER
;

out_handler_type : SEND
| PUBLISH
| NONE

out_assignment : /* empty */
| ASSIGNMENT

out_assignment_list
END ASSIGNMENT

;

out_assignment_list : IDENTIFIER ASSIGN_TOKEN expression
| IDENTIFIER ASSIGN_TOKEN expression ','

out_assignment_list
;
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3.7 Expressions in RSML-e 

This section provides a look at the expressions available in RSML-e and their meaning.  RSML-e 
supports the standard arithmetic expressions (addition, subtraction, multiplication, and division) 
comparison operators (greater than, greater or equal, equal (=), not equal (!=), less than, less than 
or equal) as well as parenthesis for expression grouping and traditional logical not for Boolean 
expressions (NOT expression).  These expressions can contain references to variables, constants, 
macros, and functions.   

Literal values are allowed in RSML-e.  Floating point, integer and Boolean literals are given as 
expected.  Enumerated literals are given as type_name::enumeration_name.  Time values are 
given in the format n [H | M | S | MS] where n is an integer and H, M, S, MS stand for hours, 
minutes, seconds and milliseconds respectively.  Any number of these clauses can be given 
separated by white space and an optional "AND;" thus "3 H 5 M" and  "4 H 5 M and 3 S" are 
both valid time literals. 

Also supported is a set of RSML-e specific expressions involving, for example, previous values 
of variables and time.  These expressions are detailed in Table 1 on page 77.  The format of the 
entries of the table is in a peusdo-BNF grammar style.  Parts that appear in italics are references 
to other language definitions or expressions.  Parts which appear in square brackets [] are either 
optional or represent a choice of several values. For example [a] means that part “a” is optional 
and [a|b] means choose between “a” and “b.” 

 
Expression Meaning 
variable_name::[EXPECTED_MIN 

|EXPECTED_MAX 
Equal to the expected minimum or maximum of the 
referenced variable 
 

PREV_VALUE(variable_name [, n]) The nth previous value of the variable referenced before 
the current step started.  The n is optional.  For example, 
PREV_VALUE(x) is the value that the variable x had 
before it took on the value that it had at the beginning of 
current step. 
 

PREV_STEP(variable_name [, n]) The value that the variable had in the nth previous step.  
The n is optional.  For example, PREV_STEP(x) is the 
value that variable x had at the end of  the previous step 
(and the beginning of this step). 
 

TIME The current system time. 
 

TIME(variable_name) The time when the variable acquired the current value. 
 

PREV_ASSIGN(variable_name [, n]) The time when the referenced variable acquired its nth 
previous value. 
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TIME_CHANGED (variable_name [, n]) The time when the state variable given by 
variable_name  changed value. Note that this time may 
be different than when the variable last got assigned (it 
could have been assigned the same value).  
 

  
interface_name::LAST_IO The time that the interface referenced last performed I/O 

on the channel. 
 

  
[interface_name::] [MIN_SEP | MAX_SEP] The minimum or maximum separation for the given 

interface. 
 

expression EQ_ONE_OF expression_list True if the expression is equal to one of the comma 
separated expressions in the expression_list. 

ASSIGNED(variable_name) True if the variable was assigned in this step. 
CHANGED(variable_name) True if the variable changed its value in this step. 
AT_TRUE(expression) True if the expression changed from false to true in the 

current step. 
AT_FALSE(expression) True if the expression changed from true to false in the 

current step. 
AT_CHANGED(expression) True if the expression changed from one truth-value to 

another truth-value in the current step. 

 

Table 1: Expressions in RSML-e. 
 

3.8 Macros and Functions 

The macros and functions of RSML-e complete the language by allowing the analyst to define 
commonly used computations in a modular way.  This facilitates good structure and 
maintainability in the specification.  Macros in RSML-e are simply a compact method of writing 
Boolean functions.  Macros are represented as an And/Or table (thus, in a way, a macro is simply 
a named And/Or table). A sample macro from the clean room can be seen in Figure 13. A 
function from the avionics domain is shown in Figure 14. 
MACRO inner_door_unlocked() :

TABLE
..airlock_entry IN_ONE_OF {awaiting_exit, exiting} : T * *;
..airlock_exit IN_STATE entering : * T *;
panic_alarm = on : * * T;

END TABLE

END MACRO

Figure 13: Macro example. 
 



 

Introduction to RSML-e and Nimbus               Page 78 
 

TYPE_DEF Selected_Nav_Types { FMS, VOR, LOC }

FUNCTION Selected_Nav_Type(): Selected_Nav_Types
EQUALS FMS IF Is_Selected_Nav_Source_FMS()

EQUALS VOR IF
TABLE
VNR_Signal_Type = VOR : T;
Is_Selected_Nav_Source_VNR() : T;
END TABLE

EQUALS LOC IF
TABLE
VNR_Signal_Type = LOC : T;
Is_Selected_Nav_Source_VNR() : T;
END TABLE

END FUNCTION

Figure 14: Function example. 

In RSML-e, both Macros and functions can take parameters.  Parameters allow the macros and 
functions to be even more modular and allow the analyst to reuse common conditions in various 
situations in the specification.  For example, you might wish to have a macro to do pair wise 
sensor failure analysis for an array of sensors.  The macro would contain the conditions for 
determining failure given two sensor inputs and the parameters would by the sensor inputs.  The 
clean room specification does not contain any parameterized macros or functions, so no example 
from that specification is possible here; however, the function definition in Figure 15 illustrates 
the simple maximum function. 

 
FUNCTION Max(a IS INTEGER, b IS INTEGER): INTEGER

EQUALS a IF a > b
EQUALS b IF a <= b

END FUNCTION

Figure 15: Parameterized function. 
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The BNF for macros and functions follow below: 

 
/*------------ Macro definitions --------------------------------*/

optional_formal_parms : /* EMPTY */
| '(' formal_parameter_list ')'

macro_def : MACRO IDENTIFIER optional_formal_parms ':'
condition

END MACRO
;

/*------------ Function definitions -----------------------------*/
optional_expr_list : /* empty */

| expression_list

function_def : FUNCTION IDENTIFIER '('
formal_parameter_list ')' ':' type_ref

case_list
END FUNCTION

| STUB_FUNCTION IDENTIFIER '('
formal_parameter_list ')' ':' type_ref

optional_expr_list
END STUB_FUNCTION

;

case_list : /* EMPTY */
| case_list case
;

case : EQUALS expression IF condition
| TRANSITION expression TO expression IF

condition
;

actual_parameter_list : /* empty */
| expression_list
;

formal_parameter_list : /* empty */
| IDENTIFIER IS type_ref
| formal_parameter_list ',' IDENTIFIER IS

type_ref
;
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3.9 Advanced Language Issues 

RSML-e is based on the idea that the various language definitions in the specification constitute a 
mathematical relation from inputs to outputs.  The relation is constructed by computing the 
values of the various language items (state, input, and output variables, macros, and functions).  
This is an important concept in the formalism of RSML-e because it allows the opportunity to 
create various completeness and consistency criteria for the relation.  However, this view of the 
semantics leads to a certain behavior of specifications written in the notation that might not be 
readily apparent to the newcomer.  These are briefly discussed in the sections below.  For more 
information, please refer to the formal semantics of RSML-e. 

3.9.1 Circular Dependencies 

When an entity in the specification changes, the semantics of the RSML-e language dictate that 
all entities that depend on the one that changed must be recomputed.  Thus, the order of 
computation in the specification is determined by the data dependencies of the various language 
entities.  This means that there can be no circular dependencies, because there would be no way 
to tell when to stop updating the values in the specification.  That is, the data dependencies for all 
entities in the specification must form a directed acyclic graph. 

Using expressions that reference the previous values of variables, however, will not cause 
circular dependencies.  That is because this previous information is fixed at the start of the 
computation and remains constant throughout.  Thus, formally, these previous values can be 
viewed as parts of the system state (or as additional inputs to the specification). 

3.9.2 Transition Issues and Equivalence Class Evaluation 

The semantics of RSML-e states that for each state variable there should be a maximum of one 
transition taken in each step between its immediate children.  A side effect of these is that the 
state of the machine is recomputed on a variable-by-variable basis, not on a transition-by-
transition basis.  The data dependencies for a variable are computed by taking the union of the 
data dependencies of the transitions between the values of the variable (all the expressions in the 
variable definition are taken into account).  Furthermore, variables with parent sate values are 
defined to be data dependent on their parent variables in the variable hierarchy so that variables 
that are “higher” in the tree get evaluated before the child variables.   

3.9.3 Receive Handlers 

Usually, entities in the RSML-e specification are recomputed when some other entity changes.  
However, the handlers in the RECEIVE interfaces are a special case because, in general, they 
should only be recomputed when a message was actually received regardless of the data 
dependencies of the conditions in the handlers.  Therefore, to denote this separate behavior those 
handlers are marked with Receive_Handler instead of just Handler. 
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3.9.4 PREV_VALUE and PREV_STEP 

The PREV_VALUE and PREV_STEP expressions in RSML-e allow the user to access the 
previous values of variables and interfaces.  This does not change the view of the specification as 
a function.  Rather, these values are (necessarily) static and thus are simply viewed as additional 
parts of the system state. 
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4 NIMBUSSim Graphical User Interface 

4.1 The NIMBUSSim Interface 
 

 

 
Figure 16: The NIMBUSSim GUI Main Window 

 

4.2 Overview 

The NIMBUSSim Graphical User Interface provides accurate and fast access to the functionality 
of the NIMBUS simulator. Specifications are visualized in two ways: a tree-structure of detailed 
information about the data, and a State Hierarchy Diagram that enhances the context of state 
relationships. Furthermore, the user may observe the effects of execution with the run-time 
information provided by Active State Highlighting, Variable Watch updates, and the Clock 
display  

Launching NIMBUSSim causes two windows to appear: the Graphical User Interface (Fig. 1) and 
the Command-Line Interpreter. There exists one simulator and these two windows are two 
methods for issuing commands.  The user may switch between them at any time. 

In the next few sections we present an overview of the NIMBUS commands that are accessible 
through the GUI. The first section links the GUI commands with their visual appearance. The 
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next section summarizes the steps required to run a simulation, as they pertain to the User 
Interface. Finally, the Command Reference summarizes the GUI and Command Line 
counterparts, with some additional actions that are unique to each.  

4.3 Details 

4.3.1 File Menu Options 

 
Figure 17: The File Menu 

Load Specification 

Opens an existing specification causing it to be loaded into the simulator. Upon successful 
parsing, the state hierarchy is diagrammed and specification details are loaded into the Tree 
View. 

Load Script File 

Opens a script file and loads it into the simulator for immediate evaluation. 

Options 

Here you can access many of the user-configurable properties from the System Options 
dialog. In addition, most of these options are available through their associated toolbars and 
menus. 

Exit 

Exits the simulator and interface. If there is a simulation in progress, then you must Stop the 
Full Execution. 
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4.3.2 System Options 

 

 
Figure 18 Layout Options 

Layout options include orientation. Choose Horizontal for one that favors wide layouts. Choose 
Vertical for one that favors taller layouts. The Vertical layout is more useful for transferring the 
image to a word processor.  

 
Figure 19 Color Options for State Hierarchy 
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You may select the State Hierarchy Diagram colors. 
 
 

 
Figure 20 Preview Panel for State Hierarchy Options 

You can preview the Layout, Orientation and Color configurations before committing to them . 
 

 
Figure 21 Simulator Options 

State Diagram Updating 
Check or uncheck to either enable or disable the updating of the State Hierarchy Diagram 
during any run command executions. 
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Watch Window Updating 

Check or uncheck to enable or disable the updating of the Watch Window during any run 
command executions. 

Real Time 
Set the simulation clock type to either Real Time (checked) or Simulation Time (unchecked). 

 

4.3.3 View Menu 

 
Figure 22 The View Menu 

Main Toolbar 

Show (checked) or hide (unchecked) the Main Toolbar. This toolbar contains commands: 
Load Specification, Help 

State Diagram Toolbar 

Show (checked) or hide (unchecked) the State Diagram Toolbar. This toolbar contains 
commands: Load Specification, Help 

Simulation Toolbar 

Show (checked) or hide (unchecked) the Simulation Toolbar.  

Analysis Toolbar 

Not implemented in this version of the user-interface. 

Status Bar 

Show (checked) or hide (unchecked) the Status Bar. This bar contains: Command Prompts, 
System Status, Simulation Time, Clock Type, and the State Diagram Updating, Watch 
Updating states. 
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Refresh Views 

Updates the Tree, State Hierarchy, and Watch Window. This is useful for updating the State 
Diagram and Watch Window when their dynamic updating have been disabled (via the 
Simulation Menu) and you wish to view the current state of the system. 

Watch Window 

Shows the Watch Window.  
 

4.3.4 Simulation Menu and Toolbar 

 

 
Figure 23 The Simulation Menu 

 
Figure 24 The Simulation Toolbar 

Run Atomic 

Runs one step in the active simulation. 

Run Microstep 

Runs one microstep in the active simulation. 
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Run Step 

Runs one step in the active simulation. 

Run Full Speed 

Runs the active simulation at full speed. 

Stop Execution 

Stops the running simulation. 
 

 
 
Stopping Conditions 

Activates the Stopping Conditions dialog box wherein you may View, Add, or Remove 
Stopping Conditions. 

Connect Channels 

Activates the Channel Connector dialog box. 

Force State Active 

After the selection of a state in the State Diagram, you may force it to be Active here and also 
in a popup menu in the Diagram. 

Force State Inactive 

After the selection of a state in the State Diagram, you may force it to be Inactive here and 
also in a popup menu in the Diagram. 

State Diagram Updating 

Check or uncheck to either enable or disable the updating of the State Hierarchy Diagram 
during any run command executions. 

Watch Window Updating 

Check or uncheck to enable or disable the updating of the Watch Window during any run 
command executions. 

Real Time 

Set the simulation clock state to either Real Time (checked) or Simulation Time (unchecked). 
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4.3.5 State Hierarchy Menu and Toolbar 

 

 
Figure 25 The State Hierarchy Menu 

 
Figure 26 The State Hierarchy Toolbar 

Apply layout 

Apply the currently selected layout to the active specification. If you have made any 
modifications to a diagram and wish to apply the layout, then be certain to save  your work 
via Save Layout if you wish to retain it; there is no reminder mechanism. 

Load layout 

You may load any layouts provided that they were created with this application's tool. The 
extension af is appended to your saved files to help identify them from within the file dialog 
boxes. If you load a layout that is inconsistent with the current specification, then NIMBUS 
will attempt to repair your graph. This feature can be used during incremental development 
of your system. 
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Save layout 

Saves the current layout of the State Hierarchy Diagram. It is required that you save the 
diagram in a separate file from the rsml specification. 
 
 

Copy to clipboard 

Copies the Diagram layout to the Windows clipboard. This is useful for pasting the image 
into other applications such as word processors and image editors. 

Save as wmf 

Saves the layout as a Windows Metafile with a wmf extension. This is useful for saving the 
diagram in a portable format. WMF files can be inserted into numerous applications. 

Select/View Layout 

This option presents you with the Layout and Orientation Options page in the System 
Options dialog. 

Select/View Colors 

This option presents you with the Color Options page in the system options dialog. 

Zoom Options 

The zoom feature works as follows. The user selects a zoom factor. This factor is used for 
both zooming in and zooming out. The user can, at any time, reset to the original size by 
selecting None (see below).  

Zoom Out (+) 

Zoom out using the current factor. 

Zoom In (-) 

Zoom in using the current factor. 

Set Zoom Factor: Percentages 

You may select a zoom factor here. The current one is checked. 

Set Zoom Factor: None 

When checked, this option sets the diagram size to its original scale and then inhibits further 
zooming until this option is unchecked. 

Set Zoom Factor: Fit to Window 
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The diagram is stretched to fit the currently visible viewing area of the State Hierarchy View. 

Highlight active states 

You may toggle the highlighting of active states. When this option is checked, active states 
are colored according to their fill color (a reconfigurable option from Color Options). 
Unchecking this item disables highlighting and is a useful feature for copying or saving 
structurally focused diagrams.  

4.3.6 Tree View 

Specification details are contained in the Tree 
View. The first level of this view displays 
identifying names for key components in the 
system. The tree is refreshed when: a new 
specification is loaded, when the user presses 
F5, and when the user selects Refresh Views 
from the View Menu.  

 

At the top of the tree, the state hierarchy is 
displayed where represents a State and 
represents an Equivalence Class. 

 

Variables are displayed with information for 
Type, Expecting Min, Expected Max, and 
Initial Values (input variables only). 
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Interfaces are displayed with their constant 
attributes as well as the configurable 
Connection information. This is refreshed with 
new information when the user collapses then 
expands the connection or interface name 
nodes, or by pressing F5 or selecting Refresh 
Views from the View Menu. 
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4.3.7 State Hierarchy Diagram 

The State Hierarchy Diagram is a visualization of the hierarchy of states. The user may configure 
its Color Options, Layout and Orientation Options, and other settings. You are free to select and 
then move, resize, or stretch the states and their connective links. All relationships to the 
specification are preserved. 

Active States are colored as shown, with atomic states filled and non-atomics bordered. In the 
following example, the state One is active. Also, the user has selected state Five and is about to 
Force State Active via the popup menu. You will notice that Force State Inactive as well as 
other diagram options is accessible from this menu as well.  
 

 
Figure 27 State Hierarchy Popup Menu: Forcing a State Active 

 
 

4.3.8 Status Bar 

The Status Bar contains information about the current system state and settings as shown.  
 

 
Figure 28 Status Bar 
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4.3.9 Stopping Conditions 

 

 
Figure 29 The Stopping Conditions Viewer 

To add a stopping condition, push the Add button. 
 

 
Figure 30 Stopping Conditions Example: Variable Change 

In the next dialog, select the radio button for the item to which you want to add a stopping 
condition. In this example the user chooses to add the condition When Out_Var changes: 
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Figure 31 Stopping Conditions Example: State Entered 

For states, select the item in the tree diagram and then choose the desired condition from the list. 
Here, the user adds the condition "When state Three is entered". 
 

 
Figure 32 Stopping Conditions Viewer 

The results are shown above.  You may delete a condition: select it from the list and press the 
Delete button. 
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4.3.10 Watch Window 

The Watch Window contains a listing of Variables and their values. When values change over 
time, the newly updated ones are colored red as shown.  

 
Figure 33 Watch Window 

4.3.11 Channel Connector 

To connect an interface to a channel:  

• Select the interface from the list  

• Choose the connection type File or NIMBUS Channel  

• Select the appropriate options:  

• For files, choose Single or Multiple and enter the source file name.  

• For NIMBUS Channels that are Publish or Read, you have the option to select Buffer.  

Here the user connects In_IFace to the file channel basic_in.txt: 
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Figure 34 The Channel Connector 

 
 

4.4 Running a Simulation 
 

Here are a few quick steps that enable you to get simulation started. 

 

Load a RSML-e File 

1. Load a rsml file from File menu or by clicking the icon to the left of the main toolbar  

2. Connect Channels with the Channel Connector. 

3. Add Stopping Conditions (optional) 

4. Check/Set the Clock Type 

5. Check/Set the Updating of the State Hierarchy Diagram and Watch Window 

6. Bring the Watch Window to the foreground. 

7. Run: Atomic, Microstep, Step, or Full Speed 

8. Stop 

Optionally, the user could have created a Script File of Command Line Interpreter directives and 
then loaded that file into the simulator. 

Once a specification is loaded, you can visualize its structure with the Tree View and State 
Hierarchy Diagram. 
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As the execution proceeds, you can view its progress by observing: the highlighting of active 
states in the State Hierarchy Diagram, the changing of variable values in the Watch Window, the 
updating of the clock time in the Status Bar. 
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4.5 Command Reference 

The following is a summary of commands that are accessible from the graphical user interface 
and the command line interpreter.  There are some additional commands, not listed, that are 
unique to the GUI and the Command Line Interpreter. Use the help command to get the latest 
information on all commands available t the user.  
 
Task Graphical User Interface Command Line 
Help [Help Menu | Main Toolbar] [? | help]  
Load a Specification [File Menu | Main Toolbar | 

Ctrl+L] 
load [filename] 

View Specification Tree View  & State Hierarchy 
View 

dump -s allStates 

View Active States State Hierarchy View (highlighted) dump -s activeStates 
View Input Interfaces Tree View dump -s inputHandlers 
View Output Interfaces Tree View dump -s outputHandlers 
View Input Variables Tree View dump -s inputVariables 
View Output Variables Tree View dump -s outputVariables 
Connect Channels [Simulation Menu | Simulation 

Toolbar] Channel Connector 
connect handler_options channel_options 

View Stopping Conditions [Simulation Menu | Simulation 
Toolbar] Stopping Conditions 

dump -s stopConditions 

Add  Stopping Conditions [Simulation Menu | Simulation 
Toolbar] Stopping Conditions  Add 

stopCondition s entityName 

Remove Stopping 
Conditions 

[Simulation Menu | Simulation 
Toolbar] Stopping Conditions  
Remove 

stopCondition c [position] 

Run One Atomic Step [Simulation Menu | Simulation 
Toolbar | Shift+A] 

run e 

Run One Microstep [Simulation Menu | Simulation 
Toolbar | Shift+M] 

run m 

Run One Step [Simulation Menu | Simulation 
Toolbar | Shift+S] 

run s 

Run Full Speed [Simulation Menu | Simulation 
Toolbar | Shift+F] 

run f 

Stop [Simulation Menu | Simulation 
Toolbar | Shift+X] 

stop 

Force State Active [Simulation Menu | Simulation 
Toolbar] 

forceState 
[state_name_path|eq_class_name_path] -a 

Force State Inactive [Simulation Menu | Simulation 
Toolbar] 

forceState 
[state_name_path|eq_class_name_path] -i 

Set Time Model to Real-
time 

Simulation Menu:  Realtime setoption driver realtime 

Set Time Model to Sim-
time 

Simulation Menu:      Realtime setoption driver simtime 

Load a Script File [File Menu | Simulation Toolbar] script [-read | -r ] scriptFileName 
State Hierarchy Layout [State Hierarchy Menu | Toolbar]  
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Options and Color Options 
State Hierarchy Copy, 
Load, Save, Zoom, Apply 
Layout 

[State Hierarchy Menu | Toolbar]  

State Hierarchy Active 
State Highlighting 

State Hierarchy Menu: Highlight 
Active State 

 

Completeness and 
Consistency Analysis 

 ceAnalysis [subcommand 

Backwards Execution 
Analysis 

 beAnalysis [subcommand] 
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5 Using NIMBUSChannel 

5.1 Introduction 

Specification and verification of software for safety critical systems is a difficult problem.  There 
are three methods available to ensure the correctness of such systems: manual inspections, 
formal verification, and simulation and testing.  All three approaches have various strengths and 
weaknesses; however, they are complementary.  To achieve the high level of confidence in the 
correctness of the system necessary today's applications, all three approaches must be used in 
concert.  The NIMBUSChannel communication framework supplies an important component of 
the simulation and testing aspect of the NIMBUS environment. 

The NIMBUSChannel framework was developed to support the execution of RSML-e models in 
conjunction with models of the other components in the environment.  The framework was 
conceived in the work done at the University of Minnesota in the Critical Systems Research 
Group.  During their work with RSML, the group developed a simulation that was capable of 
executing the formal definition of the language while taking input from text files.  Nevertheless, 
the group discovered that these capabilities alone were not a sufficiently powerful environment 
in which to test a formal specification.  It was prohibitively inflexible to create the text file input 
scripts in the early stages of execution because, most of the time, the user did not know exact 
sequences of input to test; they only wished to "debug" the formal specification.  Furthermore, in 
cases where a dynamic model, for example, an aircraft, was involved, it was very difficult to 
create even semi-realistic input scripts for the simulation.  These experiences led to the creation 
of the following requirements that any environment for the debugging and testing of formal 
specifications should support. 

• It must support execution of the RSML-e model while interacting with accurate models of the 
component's environment.  These models should be able to be nearly anything the analyst 
might desire to model the component be that other RSML-e specifications, software 
simulations, or even actual hardware in the environment. 

• It must allow the analyst to easily modify and interchange the models of the components in 
the environment.  Preferably, the components should be dynamically swappable at run time. 

• As the specification is refined from high level requirements there should not be any large 
conceptual leaps in the way in which the control software communicates with the 
environment. 

To meet these requirements, it was clear that some standard inter-process communication 
method would be necessary.  Furthermore, the more high-level such a mechanism was, the better 
it would support the needs of NIMBUSChannel.  Therefore, the CriSys group examined two 
technologies: COM (Component Object Model) and CORBA (Common Object Request Broker 
Architecture).  These frameworks provide a high-level object-oriented communication interface, 
and allow transparent distributed object access.  In the end, COM was selected because it was 
freely available for the target platform (Windows NT) and also supported by a greater number of 



 

Introduction to RSML-e and Nimbus               Page 102 
 

current applications and scripting technologies (i.e. Visual Basic for Applications and ActiveX 
scripting); thus, allowing greater flexibility at decreased cost. 

The framework models interprocess communication as messages passing over simple channels.  
Currently, the only types supported by the channels are integer, enumerated, and boolean; in the 
future, the channels will most likely support floating point as well.  Formally, all communication 
from a RSML-e specification is one of two types: Send-Receive or Publish-Read.  Send-Receive 
communication is a message passing protocol where the source pushes a message across the 
channel to the destination, causing an interrupt, or signal, in the receiving process.  This type of 
communication is well suited to COM's function-call type of interaction.  Publish-Read 
communication is where the source updates (or Publishes) the message on the channel 
intermittently and at any time the destination can pull the current message from the channel.  
This type of communication requires additional support because there must be a buffer (to hold 
the current message on the channel).  There are a number of places that make logical sense for 
this buffer to reside. 

• Inside the publishing application.  In this model, when the destination of the channel 
wishes to read, the source of the channel is interrupted and produces the message requested.  
Storing the buffer here allows, for example, the destination of the channel to cause an update 
of a spreadsheet.  Notice that in this model the publishing end of the channel never calls the 
"Publish" method of the channel-end component; instead, it simply waits to be called by the 
destination end of the channel.  The subtype of the Publish-Read communication is known as 
PublishViaEvent-Read. 

• Inside the publishing channel component.  Alternatively, the buffer could reside inside the 
publishing end of the channel.  Then, instead of passing it immediate over the channel, the 
channel-end component stores the message and waits to be called by the reader.  When the 
reader asks for the message on the channel, the publishing channel-end simply passes the 
buffered message across the channel.  This type is known as PublishWithBuffer-Read. 

• Inside the reading channel component.  Finally, the publishing end can immediately pass 
the message over the channel (like a Send-Receive channel) and the read channel, instead of 
interrupting the destination like in Send-Receive, stores the message in its buffer.  Then, 
when the reading process need the message, the reader channel-end simply returns its 
buffered copy.  This type is known as Publish-ReadWithBuffer. 

These different options allow the user of NIMBUSChannel to optimize the number of inter-
process COM calls and thereby increase the effective speed of the simulation environment.  
Furthermore, the ability to publish by event (i.e. interrupt the publishing process) allows for great 
flexibility in integrating applications like spreadsheets and databases into the NIMBUSChannel 
environment.  More information about how these types of communication are implemented can 
be found in the Behind the Scenes section on page 106. 

This document describes the NIMBUSChannel: its component applications, how to manage a 
simulation, how to create and add component models in the environment.  To conserve space, 
this document assumes some familiarity with COM, C++, and Visual Basic.  The examples given 
should be readable by any computer scientist; however, the reader should not expect to actually 
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be able to construct a NIMBUSChannel component without becoming familiar with the 
technologies involved. 

5.2 Components of NIMBUSChannel 

Aside from the NIMBUSChannel clients provided in the example applications, the NIMBUS 
Environment installation includes three main NIMBUSChannel client applications: The 
NIMBUSSim RSML-e Simulator and Analysis tool, the NIMBUSChannel MFC client, and the 
NIMBUS Manager.  These applications provide a basis from which to build a system simulation.  
A dynamic link library (DLL), type libraries, and a background executable process support them.  
This section describes each of these components and their use. 

5.2.1 NIMBUSSim 

NIMBUSSim is described in The NIMBUSSim Graphical User Interface Manual included in the 
NIMBUS environment documentation.  To connect the interface of a RSML-e specification to the 
NIMBUSChannel framework, simply select the interface you wish to connect in the channel 
connection dialog box and then choose NIMBUSChannel as the type of connection.  For Publish 
or Read interfaces it is possible to select whether or not the buffer resides with the selected 
interface, or on the other end of the channel (see page 106, Behind the Scenes). 

 

Figure 35 shows the channel connection dialog box.  The example ASW specification has been 
loaded and the user is in the process of connecting the DOIStatusMessageInterface to the 
NIMBUSChannel environment.  Because the DOIStatusMessageInterface specifies the receive 
type of communication, the Buffer option is not available and is grayed out. 
 

 
Figure 35: The channel connector dialog box in NimbusSim with COM selected 

 
 



 

Introduction to RSML-e and Nimbus               Page 104 
 

5.2.2 NIMBUSChannel Client 

The NIMBUSChannel Client allows the user to send simple on-the-fly inputs to other components 
in the NIMBUSChannel architecture.  Figure 36 shows the configuration dialog box for the client.  
The user specifies the Component name, the channel name, the type of communication, and the 
number of fields in the message that they are sending.  The channel name is a string that 
identifies which channel in the NIMBUSChannel environment the client is connecting to.  Channel 
names in the NIMBUSSim client are given in the specification document.  The component name 
identifies the process (or component) supplying that end of the channel. 

 

 
Figure 36: The configuration dialog for the simple MFC client 

 

Once the user has selected the options necessary for channel configuration and pressed the OK 
button, the client creates a new channel-end object of the appropriate type and registers itself in 
the NIMBUSChannel framework.  At that point, it is ready to participate in the framework and the 
main window of the client application appears. 
 

 
Figure 37: The simple MFC client connected to the AltitudeChannel 

Figure 37 shows the main window of the MFC client application.  The window supports all the 
various types of communication.  The title bar shows the channel name on the left and the 
component name on the right so that the client's place in the framework can be easily identified. 

5.2.3 NIMBUS Manager 

The NIMBUS Manager allows the user to dynamically control the connections between the 
various components which are registered with the NIMBUSChannel system.  Figure 38 shows the 
main window of the NIMBUS Manager.  In the left-hand column, all the channels currently 
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registered in the system are listed.  When the user clicks on a channel name, the detailed 
information about that channel is displayed in the area to the right of the channel list. 

For each channel, the NIMBUS Manager displays the channel name (in Figure 38, 
AltitudeChannel), the type (Send-Receive) and three lists (sources, destinations, and observers).  
In the lists are the components that supply that channel.  For example, Figure 38 shows that 
Altitude channel currently has two sources and two destinations.  The sources are "MS Excel 
ASW System" from the example files and "Simple MFC Client app" which was instantiated in 
the previous section. 
 
 

 
Figure 38: The main window of the NIMBUS Manager 

 

The check marks beside the component names in Figure 38 indicate whether or not that 
component is currently active on the channel or not.  A component that is not active cannot 
participate in the message processing (sending, receiving, publishing, etc) on that channel.  Thus, 
Figure 38 shows that the "MS Excel ASW System" component is active, whereas the "Simple 
MFC Client app" is not.  Notice in the figure that both "NIMBUSSim (ASW)" and "VB Pilot's 
Display" are active destinations on the AltitudeChannel.  The NIMBUSChannel environment 
allows multicast communication to allow multiple different displays of the data.  Also (not 
pictured in Figure 38) allowed are observers on a channel.   

The NIMBUSChannel environment does not allow multiple sources on a channel.  Thus, if the 
user where to click on the checkbox next to "Simple MFC Client app," then it would become the 
active source on the AltitudeChannel and "MS Excel ASW System" would become inactive.  For 
convenience, the first registered source and destination on a channel are made active by default. 
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5.2.4 Behind the Scenes 

The capabilities of NIMBUSChannel are implemented by a number of COM objects that 
implement several custom interfaces.  This section explains briefly what a COM object is1, what 
COM objects are used in NIMBUSChannel, and how the NIMBUSChannel objects are stored and 
implemented. 

COM is an executable (binary) software component standard.  Like Java, each COM object can 
support multiple interfaces.  Each interface has a number of methods that can be called by the 
user of the object.  Furthermore, to support dynamic run-time discovery of a component's 
capabilities, every COM interface inherits from an interface called IUnknown.  The purpose of 
IUnknown is to allow the user to query for another interface on the object.  If the query succeeds, 
then the client has a pointer to the requested interface.  If not, the client receives an error 
message indicating that the interface as not supported. 

COM is a binary standard.  That is, as long as an object conforms to the binary specification it 
can be loaded into memory and run by the COM library.  Therefore, COM is language 
independent.  Currently, developers can create COM objects in C++, Visual Basic, or Java under 
a number of different development environments.  The procedure for creating a COM object is to 
1) write the code and compile it, and 2) register it with the COM library on the machine you wish 
it to run on.  It is also possible to transparently call objects on different machines using DCOM.   

Under Windows, COM objects are either packaged into and executable file, which runs on its 
own, or into a dynamic link library, which is loaded into a process.  The NIMBUSChannel 
environment uses both techniques to package the various objects in the system.  There are three 
types of objects in NIMBUSChannel 

• Channel Ends are the objects that implement the details of the communication channels (i.e., 
implement Send-Receive, Publish-Read as discussed in the Introduction).  There are a total 
of nine channel ends: Send, Receive, Publish, PublishWithBuffer, PublishWithEvent, Read, 
ReadWithBuffer, and, Observe.  These objects shield the client processes from the details of 
the specific type of communication.  They also handle all communication with the manager 
application. 

• Channel Wrapper objects provide a convenient method of creating and destroying the 
channel end objects in the target development environment.  Currently, there are channel 
wrapper objects available for both C++ and Visual Basic. 

• The Channel Manager object manages the connection of channels in the system.  This is a 
background process that is separate from the aforementioned NIMBUS Manager.  The channel 
manager houses all the data structures displayed by the NIMBUS Manager and is the object 
which actually does the connecting and disconnecting of channels. 

                                                      
1 Many references for COM are available.  Among the best is Inside COM by Dale Rogerson (Microsoft 
Press). 



 

Introduction to RSML-e and Nimbus               Page 107 
 

The channel ends and channel wrapper objects are located in the RSMLChannelEnds.dll file 
whereas the channel manager is located in the RSMLChannelManager.exe file.  Both these files 
are located in the distribution directory and are registered in the Windows registry. 

5.3 Connecting Other Applications 

Connecting other applications into the NIMBUSChannel framework boils down to getting those 
applications to create and use the channel wrapper and/or channel end objects discussed at the 
end of the previous section.  There are several important questions to ask about the application 
that you wish to integrate: 

• Does the application have an API or macro capability that would allow other applications 
access to its internal data structures?  If not, do you have access to the source code of the 
application? 

• Does the application support ActiveX scripting technologies, for example, Microsoft's Visual 
Basic for Applications. 

• Does the application support OLE/COM automation. 

The ease of integrating any application into NIMBUSChannel is dependent upon how full featured 
the API of that application is.  Of course, if the application does not provide any API and there is 
not access to the source of the application, it will be impossible to easily integrate it into the 
NIMBUSChannel framework.  If there is an API accessible through, for example, C or C++ then a 
NIMBUSChannel C++ Client might be the way to go unless a better alternative is available. 

If the application supports OLE automation, then the application supports a set of COM 
interfaces that allow Visual Basic (or any other application) to cause various commands of the 
application to be run.  Essentially, it allows for remote control of the application.  Thus, the 
control the application and the channels can be written in one Visual Basic application and the 
developer can use the VB wrapper. 

The easiest and fastest way to achieve integration is to use an application that supports ActiveX 
scripting   ActiveX scripting is a standard where applications support the creating and use of 
COM objects within the context of a built-in scripting or macro language.  Visual Basic for 
Applications (VBA) is one common example of an ActiveX scripting language.  Using a 
language like VBA is absolutely the fastest way to integrate a new application into the system 
and it allows the most flexibility. 

The general procedure that is followed in creating clients for NIMBUSChannel is the following. 

1. Declare a variable to hold the instance of the channel wrapper object. 

2. Create the channel wrapper object. 

3. Configure the channel wrapper object by filling in the channel name, component name, and 
channel type properties. 

4. Call the register method to have your new channel join the NIMBUSChannel environment. 
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5. Use the channel. 

6. Call the unregister method when you are through using the channel. 

The following sections describe the creating of a visual basic and a C++ Client.  The focus is on 
the code which is necessary to make the application work in the NIMBUSChannel framework, not 
on the functionality of the application.  Thus, much code that deals with, for example, the user 
interface of the application is omitted. 

5.3.1 Building a Visual Basic Client 

Visual basic clients (including VBA clients) are the easiest to make.  The example in this section 
shows the creation of a client that has two channels: sending and receiving.  The example omits 
any of the user interface code normally associated with a VB application and instead focuses on 
the code necessary to make the channels function. 

Below, you see the first step in creating a NIMBUSChannel client: the variables for the objects 
have been declared. 
 
Dim WithEvents MySendChannel As RSMLChannelVBWrapper
Dim WithEvents MyReceiveChannel As RSMLChannelVBWrapper

 

These variables are declared "WithEvents" because for the receive, observe, and publish via 
event channel types, the channel end objects will cause an event to occur in Visual Basic.  Note, 
that the caller (i.e., the sender) is blocked until the event procedure involked by the receive event 
is finished executing.  Therefore, it is highly undesirable to make additional NIMBUSChannel 
calls within the event procedures as this would most likely cause a deadlock. 

Object variables in Visual Basic are not initialized automatically to new objects.  Thus, 
somewhere in the code, it is necessary to set the MySendChannel variable to a new instance of 
the RSMLChannelVBWrapper object.  After the object is created, the programmer fills in the 
properties necessary to initialize the object: the channel name, component name, and channel 
type.  Finally, the object is registered with the channel manager by calling the "Register" method.  
This code is shown on the following page. 
Sub InitChannels()

'
' MySendChannel
'
Set MySendChannel = new RSMLChannelVBWrapper

With MySendChannel
.ChannelName = "SendingChannel"
.ChannelType = rsmlSend
.ComponentName = "My First VB Client"

End With

MySendChannel.Register

'
' MyReceiveChannel
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'
Set MyReceiveChannel = new RSMLChannelVBWrapper

With MyReceiveChannel
.ChannelName = "ReceivingChannel"
.ChannelType = rsmlReceive
.ComponentName = "My First VB Client"

End With

MyReceiveChannel.Register

End Sub

 

After the InitChannels function (above) has completed, both the sending and receiving channel 
clients will be ready for use.  For the sending channel, we can make a VB interface form to allow 
the user to send the message (not shown).  However, for the receiving VB will call the event 
procedure pictured below. 
 
Sub MySendChannel_receive(msg() As Long)

'
' Display Message shows the message to the user
'
DisplayMessage msg

End Sub

 

The procedure takes one argument: an array of long integers.  This array is the message that is 
passed over the channel.  Enumerated types and Boolean values are converted to integers (0 for 
false, 1 for true, 0 indexed for the enumerated types) before they are passed over the channel.  
The developer can put any code that he or she likes in the event procedure; however, note again 
that the sender is blocked until the call returns. 
 
Sub CleanupChannels()

MySendChannel.Unregister
MyReceiveChannel.Unregister

End Sub

 

Finally, after the application is done using the NIMBUSChannel framework it should unregister 
the channel end objects so that the channel manager can disconnect and remove them from the 
system. 
 

5.3.2 Building a C++ Client 

Creating a C++ Client is much like creating a Visual Basic client.  The differences many lie in 
syntax and the fact that in C++ it is necessary to deal with VB compliant types, for example, the 
SAFEARRAY structure that is used to pass the messages over the channels.  These topics are 
beyond the scope of this guide, and, in practice, creating a custom C++ client is a rare occurrence 
under Windows.  An example of a C++ Client, written as a dialog based MFC application, is the 
simple channel client distributed with the NIMBUS environment.  The source for this client can be 
obtained from Jeff Thompson (thompson@cs.umn.edu). 
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5.4 Troubleshooting and Common Issues 

This section is under development and will evolve as the tools get more use. 
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Appendix A  - Using the Airlock Interface 

The VB Airlock interface is used to provide the environment for an airlock control specification.  
It uses the NIMBUS-Channel communications framework to communicate with a specification.  
The VB program periodically sends a message to the specification describing the status of the 
environment and receives a message with actuator commands from the specification.  The input 
message for the specification is sent over the channel named “inputChannel”, and the VB client 
receives the output message from the specification over the channel named “outputChannel”.  By 
connecting an RSML specification to these channels, it is possible to communicate with the VB 
client. 

 

A.1 Message Specifications 

The message specifications are as follows: 
 
MESSAGE Environment_Message { 
   f_panic_button IS boolean, 
   f_reset_button IS boolean, 
   f_inner_door_request IS boolean, 
   f_outer_door_request IS boolean, 
   f_inner_door_open IS boolean, 
   f_outer_door_open IS boolean, 
   f_airlock_occupied IS boolean 
} 
 

This message is received by the specification, and describes the status of, respectively: 

• the panic alarm button 

• the reset button 

• the inner door request button 

• the outer door request button 

• whether or not the inner door is open 

• whether or not the outer door is open 

• whether or not the airlock is occupied 
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From this information, it should be possible to create a specification controlling the behavior of 
the airlock. 

The message sent to control the actuators of the airlock is as follows: 
 
MESSAGE Actuator_Message { 
   f_inner_door_lock IS boolean, 
   f_outer_door_lock IS boolean, 
   f_decontaminate IS boolean, 
   f_panic_alarm IS boolean, 
   f_timeout_alarm IS boolean 
} 
 

This message describes actuator commands to, respectively: 

• lock (TRUE) or unlock (FALSE) the inner door 

• lock (TRUE) or unlock (FALSE) the outer door 

• decontaminate the chamber 

• turn on/off the panic alarm 

• turn on/off the timeout alarm. 

These actuators control the operation of the airlock. 
 

A.2 Creating Specification Interfaces. 

In order to connect the specification to the VB Airlock, it is first necessary to create interfaces to 
receive/send messages.  First, we need an input interface to receive in the environment message.  
Here is some sample code that will do this step: 
 
MESSAGE Environment_Message {

f_panic_button IS boolean,
f_reset_button IS boolean,
f_inner_door_request IS boolean,
f_outer_door_request IS boolean,
f_inner_door_open IS boolean,
f_outer_door_open IS boolean,
f_airlock_occupied IS boolean

}

IN_VARIABLE panic_button : boolean
INITIAL_VALUE : FALSE
CLASSIFICATION: MONITORED

END IN_VARIABLE

IN_VARIABLE reset_button : boolean
INITIAL_VALUE : FALSE
CLASSIFICATION: MONITORED

END IN_VARIABLE
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IN_VARIABLE inner_door_request : boolean
INITIAL_VALUE : FALSE
CLASSIFICATION: MONITORED

END IN_VARIABLE

IN_VARIABLE outer_door_request : boolean
INITIAL_VALUE : FALSE
CLASSIFICATION: MONITORED

END IN_VARIABLE

IN_VARIABLE inner_door_open : boolean
INITIAL_VALUE : FALSE
CLASSIFICATION: MONITORED

END IN_VARIABLE

IN_VARIABLE outer_door_open : boolean
INITIAL_VALUE : FALSE
CLASSIFICATION: MONITORED

END IN_VARIABLE

IN_VARIABLE airlock_occupied : boolean
INITIAL_VALUE : FALSE
CLASSIFICATION: MONITORED

END IN_VARIABLE

IN_INTERFACE Update_Interface :
MIN_SEP : UNDEFINED
MAX_SEP : UNDEFINED
INPUT_ACTION : RECEIVE(Environment_Message)
HANDLER :

CONDITION : TRUE
ASSIGNMENT

panic_button := f_panic_button,
reset_button := f_reset_button,
inner_door_request := f_inner_door_request,
outer_door_request := f_outer_door_request,
inner_door_open := f_inner_door_open,
outer_door_open := f_outer_door_open,
airlock_occupied := f_airlock_occupied

END ASSIGNMENT
END HANDLER

END IN_INTERFACE

 

Similarly, the output interface must be connected: 
 
MESSAGE Actuator_Message {

f_inner_door_lock IS door_lock_status,
f_outer_door_lock IS door_lock_status,
f_decontaminate IS boolean,
f_panic_alarm IS on_off,
f_timeout_alarm IS on_off

}
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OUT_INTERFACE Actuator_Interface :
MIN_SEP : UNDEFINED
MAX_SEP : UNDEFINED
OUTPUT_ACTION : SEND(Actuator_Message)
HANDLER :

CONDITION : TRUE
ASSIGNMENT

f_inner_door_lock := inner_door_lock,
f_outer_door_lock := outer_door_lock,
f_decontaminate := decontaminate,
f_panic_alarm := panic_alarm,
f_timeout_alarm := timeout_alarm

END ASSIGNMENT
ACTION : SEND
END HANDLER

END OUT_INTERFACE 
 

where inner_door_lock, etc., should be state variables within your specification.   
 

A.3 Connecting the RSML Channels 

In order to “wire together” the VB client with the RSML specification, you must connect the 
RSML interfaces to the VB interfaces.  On the VB side, this is embedded in the application; 
however, we must manually connect the interfaces on the RSML side.  You can either connect 
the interfaces from the RSML command line, or you can write a script file, which will connect 
the interfaces whenever the specification loads, which is the recommended procedure.   

Creating a Script File 

To create an automatically loading script file, create a text file with the name 
<SPECIFICATION_NAME>.nscript, where SPECIFICATION_NAME is the name of the 
RSML specification.  If this file is in the same directory as the specification, it will be 
automatically loaded when the specification is loaded. 

 

Script File Contents 

Here is an example script file that connects the Update_Interface and the Actuator_Interface 
(described above) to the channels used by the Visual Basic client.  The name of the RSML 
specification that uses this file is Cleanroom.nimbus. 

Cleanroom.nscript: 
connect -i Update_Interface inputChannel -com
connect -o Actuator_Interface outputChannel -com
setoption driver realtime

 

The connect command connects an interface to a communications channel.  The –i option is used 
to specify that this connection should be for input into the specification.  Similarly, –o signifies 
output from the specification.  Next are the names of the interface and channel to be connected, 
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respectively.  The final argument specifies that this channel is a COM channel.  Nimbus can 
read/write over several channel types: for example, it is possible to create input files and use 
them as channels.  COM channels use Microsoft’s COM to communicate in real time between 
applications. 

The setoption command is used to toggle several simulation options.  In this case, it sets the 
simulator to run in realtime mode, as opposed to simulated time mode.  In simulated time mode, 
the specification runs much faster than real time.  This mode is useful when replaying a log of 
generated events or using file channels.  However, for COM channels, the specification must be 
run in real time mode for correct results. 
 

A.4 Executing the Nimbus Simulator and the VB Driver 

Once a script file has been created, it is straightforward to simulate the behavior of the 
specification.  First, start the VB Driver executable.  Then, start the RSML simulator, and load 
the specification.  At this point, if your script file is correctly written, all channels should be 
wired together.  You can check by looking at the Nimbus command line window after loading 
the specification; it should read something like: 
Script file name: C:\data\srcsafe\Members\whalen\csci8990\cleanroom.nscript
executing command: connect -i Update_Interface inputChannel -com
Finding channel manager.
Registering with channel manager.
executing command: connect -o Actuator_Interface outputChannel -com
Finding channel manager.
Registering with channel manager.
executing command:
executing command: setoption driver realtime
executing command:
completed script file C:\data\srcsafe\Members\whalen\csci8990\cleanroom.nscript
5 lines processed.

 

If you don’t see these lines in the command line window, it is likely that the file name of the 
script file is wrong; make sure that the file does not have a .txt extension on the end. 

Finally, you should be able to simply start the simulator and test your work. 
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The VB Interface looks like this: 

 
 

When the checkboxes are checked, the “actions” are occurring.  So by checking “Open Inner 
Door” (if the door is unlocked), the user has opened the inner door.  These conditions continue to 
hold until the box is unchecked. 

The buttons at the bottom (reset and PANIC), simulate the user pressing either the reset or the 
panic button.  In this implementation, these activities are only true for one instant and then false 
thereafter.  

The status lights determine the state of the system.  Red and Green mean locked and unlocked, 
respectively, for the doors.  Similarly, Green means no alarm, and red means alarm on. 

That’s about all there is to it.  Have fun & let us know of any errors. 
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Appendix B  - Textual Grammar of RSML-e 

The full grammar for RSML-e is given below.   

 
component_def : def_list

;

def_list : /* empty */
| def_list def
;

def : type_def
| constant_def
| state_variable_def
| in_variable_def
| in_interface_def
| out_interface_def
| macro_def
| function_def
| message_def
;

/*----------- State definition rules -------------------------------*/

state_variable_def : STATE_VARIABLE IDENTIFIER array_decl ':'
variable_type_decl

PARENT ':' parent_decl
INITIAL_VALUE ':' expression /* checked to be

const */
variable_numeric_decl
classification_def
case_list

END STATE_VARIABLE
;

variable_numeric_decl : /* empty */
| UNITS ':' IDENTIFIER /* added to variable

properties */
EXPECTED_MIN ':' expression /* checked to be

const */
EXPECTED_MAX ':' expression /* checked to be

const */

variable_type_decl : type_ref
| VALUES ':' '{' enum_element_list '}'
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array_decl : /* empty */
| '[' expression TO expression ']' /* both

expressions checked to be const */
;

parent_decl : NONE
| parent_name_path
;

parent_name_path : IDENTIFIER
| parent_name_path '.' IDENTIFIER
;

classification_def : /* empty */
| CLASSIFICATION ':' IDENTIFIER
;

/*------------ Type definitions, Only for enumerated types ---------*/

/* The type definitions can be safely ignored, as they should have
been handled in the first pass. */

type_def : TYPE_DEF IDENTIFIER '{' enum_element_list '}'
;

enum_element_list : IDENTIFIER
| enum_element_list ',' IDENTIFIER
;

type_ref : IDENTIFIER
| INTEGER_TYPE
| REAL_TYPE
| BOOLEAN_TYPE
| TIME
;

/*------------ Message definition rules ---------------------------*/

message_def : MESSAGE IDENTIFIER '{' field_list '}'
;

field_list : /* empty */
| IDENTIFIER IS type_ref
| field_list ',' IDENTIFIER IS type_ref
;

/*------------ Constant definition rules ---------------------------*/

constant_def : CONSTANT IDENTIFIER ':' type_ref
UNITS ':' IDENTIFIER
VALUE ':' expression /* checked to be const */

END CONSTANT
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| CONSTANT IDENTIFIER ':' type_ref
VALUE ':' expression /* checked to be const */

END CONSTANT
;

/*------------ Variable definition rules ----------------------------*/

in_variable_def : IN_VARIABLE IDENTIFIER
array_decl ':' type_ref
INITIAL_VALUE ':' expression /* checked to be

const */
variable_numeric_decl
classification_def

END IN_VARIABLE
;

/*------------- Input Interface definitions --------------------------------
*/

in_interface_def : IN_INTERFACE IDENTIFIER ':'
MIN_SEP ':' expression /* checked to be

const */
MAX_SEP ':' expression /* checked to be

const */
INPUT_ACTION ':' in_interface_type_spec '('

IDENTIFIER ')'
in_handler_list

END IN_INTERFACE
;

in_interface_type_spec : RECEIVE
| READ
;

in_handler_list : in_handler
| in_handler in_handler_list
;

in_handler : in_handler_type ':'
CONDITION ':' condition
in_assignment

END HANDLER
;

in_handler_type : RECEIVE_HANDLER
| HANDLER
;

in_assignment : /* empty */
| ASSIGNMENT

in_assignment_list
END ASSIGNMENT

;
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in_assignment_list : identifier_name_path ASSIGN_TOKEN expression
| in_assignment_list ',' identifier_name_path

ASSIGN_TOKEN expression
;

/*------------- Output Interface definitions --------------------------------
*/

out_interface_def : OUT_INTERFACE IDENTIFIER ':'
MIN_SEP ':' expression /* checked to be

const */
MAX_SEP ':' expression /* checked to be

const */
OUTPUT_ACTION ':' out_interface_type_spec '('

IDENTIFIER ')'
output_handler_list

END OUT_INTERFACE
;

out_interface_type_spec : SEND
| PUBLISH
;

output_handler_list : output_handler
| output_handler_list output_handler
;

output_handler : HANDLER ':'
CONDITION ':' condition
out_assignment
ACTION ':' out_handler_type

END HANDLER
;

out_handler_type : SEND
| PUBLISH
| NONE

out_assignment : /* empty */
| ASSIGNMENT

out_assignment_list
END ASSIGNMENT

;

out_assignment_list : IDENTIFIER ASSIGN_TOKEN expression
| IDENTIFIER ASSIGN_TOKEN expression ','
out_assignment_list

;

/*------------ Macro definitions ------------------------------------*/

optional_formal_parms : /* EMPTY */
| '(' formal_parameter_list ')'
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macro_def : MACRO IDENTIFIER optional_formal_parms ':'
condition

END MACRO
;

/*------------ Function definitions ---------------------------------*/
optional_expr_list : /* empty */

| expression_list

function_def : FUNCTION IDENTIFIER '(' formal_parameter_list ')'
':' type_ref

case_list
END FUNCTION

| STUB_FUNCTION IDENTIFIER '(' formal_parameter_list
')' ':' type_ref

optional_expr_list
END STUB_FUNCTION

;

case_list : /* EMPTY */
| case_list case
;

case : EQUALS expression IF condition
| TRANSITION expression TO expression IF condition
;

actual_parameter_list : /* empty */
| expression_list
;

/* formal parameter lists are set up in the first pass */
formal_parameter_list : /* empty */

| IDENTIFIER IS type_ref
| formal_parameter_list ',' IDENTIFIER IS type_ref
;

/*-------- Identifier path definition rules ------------------------------*/

/*
for the identifier_name_path rule, we don't need to check whether
an array_ref is NULL, because the rule will work correctly in either
case. Specifiers can leave array_ref blank in the case of a non-array
variable or if they wish to use an implicit 'this' expression.

We also assume that IDENTIFIER will always return non-NULL values.
*/

identifier_name_path : IDENTIFIER array_ref
| '.' '.' IDENTIFIER array_ref
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| identifier_name_path '.' IDENTIFIER array_ref
| identifier_name_path '.' '.' IDENTIFIER array_ref
;

array_ref : /* empty */
| '[' expression ']'
;

/*---------- Definitions defining AND/OR tables ----------------------*/

condition : TABLE
row_list
END TABLE

| expression /* Must return BOOLEAN */
;

row_list : expression ':' truth_value_list ';'
| row_list expression ':' truth_value_list ';'
;

truth_value_list : truth_value
| truth_value truth_value_list
;

truth_value : 'T'
| 'F'
| '.'
| '*'

/*---------- Expression definition rules ---------*/

expression : unary_expression
| binary_expression
| array_expression
| event_expression
| time_expression
| prev_expression
| '(' expression ')'
| ASSIGNED '(' identifier_name_path ')'
| CHANGED '(' identifier_name_path ')'
| IDENTIFIER '(' actual_parameter_list ')'
| literal
| expression EQ_ONE_OF '{' expression_list '}'

unary_expression : '-' expression %prec UMINUS
| NOT expression

binary_expression : expression '*' expression
| expression '/' expression
| expression '+' expression
| expression '-' expression
| expression '>' expression
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| expression '<' expression
| expression LESS_OR_EQUAL expression
| expression GREATER_OR_EQUAL expression
| expression EQUAL expression
| expression NOT_EQUAL expression
;

array_expression : EXISTS '(' IDENTIFIER ','

identifier_name_path ',' expression ')'
| FORALL '(' IDENTIFIER ','

identifier_name_path ',' expression ')'
| COUNT '(' IDENTIFIER ','

identifier_name_path ',' expression ')'
| FIRST_INDEX '(' IDENTIFIER ','

identifier_name_path ',' expression ')'
| LAST_INDEX '(' IDENTIFIER ','

identifier_name_path ',' expression ')'
;

event_expression : AT_TRUE '(' expression ')'
| AT_FALSE '(' expression ')'
| AT_CHANGED '(' expression ')'
;

prev_step_expression : identifier_expression
| PREV_STEP '(' identifier_expression ')'
;

optional_pv : /* EMPTY */
| ',' INT_VALUE
;

optional_ta : /* EMPTY */
| ',' INT_VALUE
;

prev_expression : prev_step_expression
| PREV_ASSIGN '(' prev_step_expression optional_pv

')'
| PREV_VALUE '(' prev_step_expression optional_pv

')'
| TIME_ASSIGNED
'(' prev_step_expression optional_ta ')'

| TIME_CHANGED
'(' prev_step_expression optional_ta ')'

;

static_variable_info_decl : EXPECTED_MIN
| EXPECTED_MAX

| UPPER_BOUND
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| LOWER_BOUND
;

identifier_expression : identifier_name_path
| identifier_name_path DOUBLE_COLON

static_variable_info_decl
| identifier_name_path DOUBLE_COLON MAX_SEP
| identifier_name_path DOUBLE_COLON MIN_SEP
| identifier_name_path DOUBLE_COLON THIS
| identifier_name_path DOUBLE_COLON TIME
| identifier_name_path DOUBLE_COLON LAST_IO

time_expression : TIME
| HOURS '(' expression ')'
| MINUTES '(' expression ')'
| SECONDS '(' expression ')'
| MILLISECONDS '(' expression ')'
;

expression_list : expression
| expression_list ',' expression
;

literal : time_literal
| INT_VALUE
| REAL_VALUE
| TRUE_TOKEN
| FALSE_TOKEN
| UNDEFINED
;

time_literal : tl_comp_list
;

tl_comp_list : INT_VALUE tl_units
| tl_comp_list tl_separator INT_VALUE tl_units
;

tl_separator : /* empty */
| AND
;

tl_units : H_TOKEN
| MIN_TOKEN
| S_TOKEN
| MS_TOKEN
;

 




